
CSE 599 I
Accelerated Computing - 

Programming GPUS
Course Introduction



Administrivia

Office hours:

Tentatively Thursday 1-3, or by appointment

Grading:

50% programming assignments, 50% final project

Textbook (very optional):

Programming Massively Parallel Processors, Third Edition: A Hands-on Approach 

David B. Kirk and Wen-mei W. Hwu.

I can provide students with a code for a 30% discount on the textbook from Elsevier.

Computing resources:

Students will need access to a CUDA-capable device (I can help with this)



Accelerated Computing

GPU Teaching Kit

Course Introduction and Overview

Lecture 1.1 – Course Introduction

GPU Teaching Kit
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Course Goals
– Learn how to program heterogeneous parallel computing systems 

and achieve
– High performance and energy-efficiency
– Functionality and maintainability
– Scalability across future generations
– Portability across vendor devices

– Technical subjects
– Parallel programming API, tools and techniques
– Principles and patterns of parallel algorithms
– Processor architecture features and constraints
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People
– Wen-mei Hwu  (University of Illinois)
– David Kirk (NVIDIA)
– Joe Bungo (NVIDIA)
– Mark Ebersole (NVIDIA)
– Abdul Dakkak (University of Illinois)
– Izzat El Hajj (University of Illinois)
– Andy Schuh (University of Illinois)
– John Stratton (Colgate College)
– Isaac Gelado (NVIDIA)
– John Stone (University of Illinois)
– Javier Cabezas (NVIDIA)
– Michael Garland (NVIDIA)



Outline

- Course Introduction
- Intro to CUDA C
- CUDA parallelism model
- Memory and data locality
- Thread execution / computational efficiency
- Memory performance
- Parallel patterns:

- Stencil (convolution)
- Prefix sum (aka scan)
- Histogram
- Sparse matrices
- Graph search

- Floating point considerations
- Dynamic parallelism / recursion
- GPU as part of a heterogeneous system
- Case studies
- ???



Introduction to Heterogeneous Parallel Computing

Lecture 1.2 – Course Introduction

Accelerated Computing

GPU Teaching Kit
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Objectives
– To learn the major differences between latency devices (CPU cores) 

and throughput devices (GPU cores)
– To understand why winning applications increasingly use both types 

of devices
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Heterogeneous Parallel Computing
– Use the best match for the job (heterogeneity in mobile SOC)

Latency 
Cores

Throughput 
Cores

DSP Cores

HW IPs

Configurable
Logic/Cores

On-chip 
Memories

Cloud 
Services
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CPU and GPU are designed very differently

CPU
Latency Oriented Cores

Chip

Core

Local Cache

Registers

SIMD Unit

C
ontrol

GPU 
Throughput Oriented Cores

Chip

Compute Unit
Cache/Local Mem

Registers

SIMD 
Unit

Threading
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CPUs: Latency Oriented Design 

11

– Powerful ALU
– Reduced operation latency

– Large caches
– Convert long latency memory 

accesses to short latency cache 
accesses

– Sophisticated control
– Branch prediction for reduced 

branch latency
– Data forwarding for reduced data 

latency

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU
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GPUs: Throughput Oriented Design
– Small caches

– To boost memory throughput
– Simple control

– No branch prediction
– No data forwarding

– Energy efficient ALUs
– Many, long latency but heavily 

pipelined for high throughput
– Require massive number of 

threads to tolerate latencies
– Threading logic
– Thread state 

12

DRAM

GPU
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Winning Applications Use Both CPU and GPU 

– CPUs for sequential parts 
where latency matters
– CPUs can be 10X+ faster 

than GPUs for sequential 
code

– GPUs for parallel parts 
where throughput wins
– GPUs can be 10X+ faster 

than CPUs for parallel code
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Core i7-6950X:  
~300 GFLOPS

nVidia Titan X (Pascal):  
~11,000 GFLOPS
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Heterogeneous Parallel Computing in Many 
Disciplines
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Financial 
Analysis

Scientific 
Simulation

Engineering 
Simulation

Data 
Intensive 
Analytics

Medical 
Imaging

Digital Audio 
Processing

Computer 
Vision

Digital Video 
Processing

Biomedical 
Informatics

Electronic 
Design 

Automation

Statistical 
Modeling

Ray Tracing 
Rendering

Interactive 
Physics

Numerical 
Methods



Scalability in Heterogeneous Parallel Computing

Lecture 1.3 – Course Introduction

Accelerated Computing

GPU Teaching Kit
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Objectives
– To understand the importance and nature of scalability in parallel 

programming
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Keys to Software Cost Control

– Scalability

App

Core A 
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Keys to Software Cost Control

– Scalability
– The same application runs efficiently on new generations of cores

App

Core A 2.0 
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Keys to Software Cost Control

– Scalability
– The same application runs efficiently on new generations of cores
– The same application runs efficiently on more of the same cores

App

Core A Core ACore A
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More on Scalability
– Performance growth with HW generations

– Increasing number of compute units (cores)
– Increasing number of threads
– Increasing vector length
– Increasing pipeline depth
– Increasing DRAM burst size
– Increasing number of DRAM channels
– Increasing data movement latency

The programming style we use in this course 
supports scalability through fine-grained 
problem decomposition and dynamic thread 
scheduling



GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under 
the Creative Commons Attribution-NonCommercial 4.0 International License.

Accelerated Computing

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode


What is CUDA?

- A set of C language extensions
- Requires a separate compiler (nvcc)

- A runtime API
- Development tools



When to use CUDA?

- When the program contains portions that are parallelizable
- Task parallel or data parallel

- When parallelizable portions make up a significant amount of 
runtime:

- If CUDA is used to achieve a 100X speedup of a portion of 
an application that accounted for 30% of runtime, the total 
applications speedup will be ~1.4X.

- When there is enough work to justify the overhead
- Typically you want 5000+ active threads



Why is GPU programming hard?

- One must take care not to increase the computational 
complexity

- Algorithms are very often memory-bound rather than 
compute-bound

- Running times can be much more sensitive to dynamic input 
values

- Familiar sequential patterns such as recursion can map to very 
non-intuitive parallel patterns

n

t



Why learn CUDA?

Can’t I just use somebody else’s GPU-accelerated library?

- You may need features that the library doesn’t support
- It is still helpful to know what is happening at lower levels

Can’t I just wait until parallelization is handled automatically by the compiler?

- By some estimates, this could be ten years or more in the future 



Why learn CUDA (specifically)?

nVidia has an installation base of about 1 billion CUDA-capable devices

Most concepts in this course generalize beyond CUDA (e.g. to OpcenCL)


