CSE 599 |
Accelerated Computing -
Programming GPUS

Learn about various sparse matrix representations
Consider how input data affects run-time performance of parallel sparse

matrix algorithms
Analyze trade-offs of different representations for various input types

Sparse Vector Representation

Sparse Vector Representation

0 7 0 0 4 0 1 0 0 0 8 4 0 0 6
0 1 0 0 1 0 1 0 0 0 1 1 0 0 1
0 0 1

7

4

1

8

if (input[x]) {
output_values[scan[x]] = input[x];

}

Reconstructability

A successful sparse representation must allow for the reconstruction of the
dense equivalent

Sparse Vector Representation

indices: 0 1 2 3 4 5 7 8 9 10 11 12 | 13 | 14 | 15
values: 0 7 0 0 4 0 0 0 0 8 4 0 0 6 0
0 1 0 0 1 0 0 0 0 1 1 0 0 1 0
0 0 1 6

[=

7

4

1

8

1

4

6

10

11

14

if (input[x]) {

output_values[scan[x]] = input[x];
output_indices[scan[x]] = x;

}

1 /12 2 33|33 4 5 5 5
4 6

Reconstructability

The reconstructability requirement imposes additional storage requirements
on sparse representations

v

N - number of elements in the vector
S - sparsity level [0 -1], 1 being fully-dense

Assume indices and values are the same size (e.g. 32-bit integers and floats)
© 7 o o 4 6 1 06 o 06 8 4 0 0 6 0

Dense representation:
N words

7 4 1 8 4 6

1 4 6 10 11 14

Sparse representation:
2NS words

The sparse representation only saves space if S < 1/2

Sparse Matrices

A matrix with a majority of nonzero elements

Frequently used to solve systems of linear equations with sparse dependencies

-X, =y, o -1 0 | 0
I o 2| 4 1

3

Compressed Sparse Row (CSR) Format

High level idea: store each row as a sparse (row) vector

Each row is of variable length depending on the sparsity pattern

values 3 1

G)000/11

colindices 0 3

High level idea: store each row as a sparse (row) vector
Each row is of variable length depending on the sparsity pattern

Additional storage is required to locate the start of each row

values

3 1 2 4 1 1 1
0 0 0 0 col indices
0 2 4 1 0 2 1 2 3 0 3

row indices

0 2 2 5 7

M- number of rows in the matrix
N - number of columns in the matrix
S - sparsity level [0 -1], 1 being fully-dense

values

3 1 2 4 1 1 1

0 0 0 0 col indices

e 2 4 1 o | 2| 1|2)|3]|60]3

row indices

0 2 2 5 7

Dense representation Sparse representation
MN 2MNS + M + 1

CSR only saves space ifS < (1 - N'1) / 2

We'll consider the application of multiplying a sparse matrix and a dense vector
Commonly used in graph-based applications

This is the core computation of iterative methods for solving sparse systems of
linear equations:

A CSR Struct

struct SparseMatrixCSR {
float * values;
int * col_indices;
int * row_indices;
int M;
int N;

}s

We assume row_indices is of length M+1

We assume col_indices and values are of length row_indices[M]

You are allowed to pass structs (and classes) by value to a CUDA kernel!

Sequential SpMV / CSR

void SpMV_CSR(const SparseMatrixCSR A, const float * x, float * y) {
for (int row = 0; row < A.M; ++row) {

float dotProduct = 0;

const int row_start = A.row_indices[row];

const int row_end = A.row_1indices[row+1];

for (int element = row_start; element < row_end; ++element) {

dotProduct += A.values[element] * x[A.col_indices[element]];

}

This For loop iterates row_end - row_start times.

row] = dotProduct;
yLrow] row_end - row_start depends on the row

X y

As in dense matrix - vector multiplication, SpMV is data parallel

We can compute the dot product of each row of A with x in parallel

Parallel SpMV / CSR Kernel

__global _ void SpMV_CSR_kernel(const SparseMatrixCSR A, const float * x, float * y) {
const int row = blockIdx.x * blockDim.x + threadIdx.x;
if (row < A.M) {
float dotProduct = 0;
const int row_start = A.row_indices[row];
const int row_end = A.row_1indices[row+1];
for (int element = row_start; element < row_end; ++element) {
dotProduct += A.values[element] * x[A.col_indices[element]];

}

y[row] = dotProduct;

Parallel SpMV / CSR Kernel Shortcomings

1. Non-coalesced memory access

dotProduct += A.values[element] * x[A.col_indices[element]];

Neighboring threads process neighboring rows, resulting in strided access

2. Control flow divergence

Each row involves a variable amount of computation, which depends on the input

3. Additional global memory reads

const int row_start = A.row_indices[row];
const int row_end = A.row_indices[row+1];

This will decrease our computation-to-global-memory-access (CGMA) ratio, which can
have significant impact for smaller and / or highly - sparse matrices

Instead of “Fixing” this kernel, let’'s consider other representations

The name derives from the sparse matrix package in ELLPACK, a tool for solving
elliptic boundary problems

ELL builds on CSR with two modifications:
1. Padding

2. Transposition

To form a padding representation, identify the longest row

Allocate for each row enough space to hold the data for the longest row

values 3 01 *
A:
* * *
3 0 1 0
2 4 1 We must pick a
@ | 06 0 | © strategy for
1 1 o .
setting the
6o 2 4 1 padded values to
o 2 % satisfy the
106 0 1 reconstructability
* * * requirement
1 2 3

col indices

Option A:

Place zeros in values
Give the column index of an actual 0

values

col indices

Option B:

Place an invalidating indicator into either array
Requires algorithmic adjustment

values 3 1 *
A:

* * *

3 0 1 0
2 4 1

0 0 0 0
1 1 *

0 2 4 1
1 0 0 | 1 o 2 -1
1 -1 -1
1 2 3

col indices

Option B:

Place an invalidating indicator into either array
Requires algorithmic adjustment

values 3 1
A:

0 0]

3 0 1 0
2 4

0 0 0 0
1 1

0 2 4 1
1 0 0 | 1 0 2
* *
1 2

col indices

Store the sparsified matrix in a column-major format (i.e. all elements in the
same column are in contiguous memory locations)

This is the default For FORTRAN, but not for C

values 3 1 0
0] 0] 0
— 3 0 2 1 1 0 4 1 0 0 1
2 4 1
1 1 0
0 2 *
* * *
—_— 0 * 1 0 2 * 2 3 * * 3
1 2 3

col indices

M- number of rows in the matrix

N - number of columns in the matrix

K- number of nonzero entries in the densest row
S - sparsity level [0 -1], 1 being fully-dense

Format Storage Requirement (words)
Dense MN
Compressed Sparse Row (CSR) 2MNS + M + 1
ELL 2MK

ELL only saves spaceif K < N / 2

An ELL Struct

struct SparseMatrixELL {
float * values;
int * col_1indices;
int M;
int N;
int K;

}s

We assume col_indices and values are of length M * K;

Parallel SpMV / ELL Kernel (Option A)

__global _ void SpMV_ELL_kernel(const SparseMatrixELL A, const float * x, float * y) {
const int row = blockIdx.x * blockDim.x + threadIdx.x;

if (row < A.M) {

float dotProduct

0,

for (int element

0; element < A.K; ++element) {

const int elementIndex = row + element* A.M;
dotProduct += A.values[elementfndex] * x[A.col_indices[elementIndex]];

}

y[row] = dotProduct; Global memory access depends on row, which has

consecutive values for consecutive threadIdx.x

—

All threads iterate the same number of times

Global memory access for row indices is no longer required

Parallel SpMV / ELL Kernel (Option B)

__global _ void SpMV_ELL_kernel(const SparseMatrixELL A, const float * x, float * y) {
const int row = blockIdx.x * blockDim.x + threadIdx.x;
if (row < A.M) {

float dotProduct

0,

for (int element = 0; element < A.K; ++element) {

const int elementIndex = row + element* A.M;
if (!A.values[elementIndex])
dotProduct += A.values[elementIndex] * x[A.col _indices[elementIndex]];

}

} We've re-introduced control flow divergence

y[row] = dotProduct; On the other hand, we avoid multiplication by 0

This kernel will perform very well for matrices with similarly-dense rows
This approach is not equally well suited to all possible inputs
Consider a 1000 x 1000 matrix with sparsity level 0.01:

e Thereare 1000 * 1000 * 0.01 = 10,000 multiply / adds to do

e |[fthe densest row has 200 nonzero values, then the kernel will perform
1000 * 200 = 200,000 multiply adds

e Byusing an ELL representation, we have increased the amount of
computation AND memory access by 20x

e Thisis really bad worst-case performance!

High-level idea: store both the column index AND row index for every nonzero
This introduces additional storage fFor the extra index

There is no longer any required ordering for the elements

values: 3 1 2 4 1 1 1
—P column indices: 0 2 1 2 3 0 3

1 0 0 1 row indices: 0 0 2 2 2 3 3

High-level idea: store both the column index AND row index for every nonzero
This introduces additional storage fFor the extra index

There is no longer any required ordering for the elements

values: 1 2 1 3 4 1 1
—P column indices: 0 1 3 0 2 3 2

1 0 0 1 row indices: 3 2 2 0 2 3 0

M- number of rows in the matrix

N - number of columns in the matrix

K- number of nonzero entries in the densest row
S - sparsity level [0 -1], 1 being fully-dense

Format Storage Requirement (words)
Dense MN
Compressed Sparse Row (CSR) 2MNS + M + 1
ELL 2MK
Coordinate (COO) 3MNS

COO only saves spaceif S <1/ 3

A COO Struct

struct SparseMatrixC00 {
float * values;
int * col_1indices;
int * row_indices;
int M;
int N;
int count;

s

We assume row_indices, col_indices, and values are of length count

void SpMV_CO0(const SparseMatrixCO0 A, const float * x, float * y) {
for (int element = 0; element < A.count; ++element) {

const int column = A.col_1indices[element];
const int row = A.row_indices[element];

y[row] += A.values[element] * x[column];

This is a very satisfyingly simple function

Compared to the sequential SpMV / CSR, the sequential SpMN / COO doesn’t
waste time with fully-zero rows

Parallel SpMV / COO

__global _ void SpMV_C00 _kernel(const SparseMatrixCO0 A, const float * x, float * y) {

for (int element = threadIdx.x + blockIdx.x * blockDim.x;
element < A.count;
element += blockDim.x * gridDim.x) {

const int column = A.col_1indices[element];
const int row = A.row_indices[element];

<:::::££EOW] += A.values[element] * x[column];;:::::::>

} Output interference!

__global _ void SpMV_C00_kernel(const SparseMatrixCO0 A, const float * x, float * y) {
for (int element = threadIdx.x + blockIdx.x * blockDim.x;
element < A.count;

element += blockDim.x * gridDim.x) {

const int column = A.col_indices[element];
const int row = A.row_indices[element];

atomicAdd(&y[row], A.values[element] * x[column]);

Switching to an atomic addition will make the output of this kernel correct...
It will also serialize a potentially large number of writes
We could solve this using techniques from the histogram pattern (i.e. privitization)

We'll note that this representation is better suited to sequential hardware and take a different
approach

Hybrid ELL / COO Representation

High-level idea: place nonzeros from the densest rows in a COO sparse matrix,
leading to a more efficient ELL representation for the remainder

Each element will be stored in the ELL or the COO matrix, not both

High-level idea: place nonzeros from the densest rows in a COO sparse matrix,
leading to a more efficient ELL representation for the remainder

Each element will be stored in the ELL or the COO matrix, not both

ELL COO

2 %6 * 2 =24 3 % 3 =
words 9 words

Hybrid ELL / COO Representation

values: column indices
ELL: 3 1 0 2
0 0 * *
A:
2 4 1 2
3 0 1 0
1 1 0] 3
0] 0 0 0
0 2 4 1
values: 1
1 0 0 1
column indices: 3

COO0: row indices: 2

M- number of rows in the matrix

N - number of columns in the matrix

K- number of nonzero entries in the densest row
S - sparsity level [0 -1], 1 being fully-dense

Format Storage Requirement (words)
Dense MN
Compressed Sparse Row (CSR) 2MNS + M + 1
ELL 2MK
Coordinate (COO) 3MNS

Hybrid ELL / COO (HYB) It's complicated!

M- number of rows in the matrix

N - number of columns in the matrix

K- number of nonzero entries in the densest row
S - sparsity level [0 -1], 1 being fully-dense

Format Storage Requirement (words)
Dense MN
Compressed Sparse Row (CSR) 2MNS + M + 1
ELL 2MK
Coordinate (COO) 3MNS

> 3MNS,

Hybrid ELL / COO (HYB) o

Perform the SpMV / ELL in parallel on the GPU
o As we've seen, the ELL format is handled efficiently by the GPU as long
as the rows are roughly the same density

Perform the SpMV / COO sequentially on the CPU
o Theirregular memory access and output interference of the SpMV /
COO is better suited to the CPU with it's large cache memory

Be careful that the time spent building a more complicated representation
is justified by the usage

SpMV /HYB Host Code

void hybridSpMV(const float * A, const int M, const int N const float * x, float * y) {

float * d_y;

float * d_x;

float * y ELL;
SparseMatrixELL d_A_ELL;
SparseMatrixC00 A_CO00;

// build sparse matrix representations, allocate / initialize host and device memory
// launch ELL kernel
SpMV_ELL_kernel<<<(A.M + 127)/128,128>>>(d_A_ELL, d_x, d_y);

// copy device result back to host
cudaMemcpy(y_ELL, d_y, A.N * sizeof(float), cudaMemcpyDeviceToHost);

// perform host computation
SpMV_CO0(A_C00, x, y _ELL);

This Function waits for the
kernel launch to complete

SpMV /HYB Host Code

void hybridSpMV(const float * A, const int M, const int N const float * x, float * y) {

float * d_y;

float * d_x;

float * y ELL;
SparseMatrixELL d_A_ELL;
SparseMatrixC00 A_CO00;

// build sparse matrix representations, allocate / initialize host and device memory

// launch ELL kernel
SpMV_ELL_kernel<<<(A.M + 127)/128,128>>>(d_A_ELL, d_x, d_y);

/] perform host computation
SpMV_CO0(A_C00, x, Vy); < This computation might happen “for free”!

// copy device result back to host
cudaMemcpy(y_ELL, d_y, A.N * sizeof(float));

for (int 1 = 0; 1 < A.N; ++1) {
y[i] += y_ELL[1];
}

CSR revisited

Block 0

Block 1

Block 2

In the parallel SpMV / CSR kernel
running on a CUDA device, the
output is computed in blocks

The runtime of each block is
determined by the densest row in
the block

High-level idea: Group similarly dense rows into evenly-sized partitions, and
represent each section independently using either CSR or ELL

This can be done by sorting rows by density

We need to store the original indices of the sorted rows to satisfy the
reconstructability requirement

Jagged Diagonal Storage (JDS) Format

Row Indices

N [0} (o} o) o w (e)) = B>

=
[N

N

=
(©)

The JDS groups can be naturally mapped to CUDA blocks

While the blocks may require variable amounts of computation, threads within
the same block will do similar amounts of computation

This will help maximize bandwidth

Best Format for SpMV?

Roughly random?

Probably best with ELL

Best Format for SpMV?

Roughly random,
but with more

variance in the
sparsity between

rows?

Probably best with a hybrid COO / ELL representation

Best Format for SpMV?

Roughly triangular?

Probably best with JDS

Best Format for SpMV?

Extremely sparse?

Probably best with COO

Diagonal (DIA):
o Stores only a sparse set of dense diagonal vectors
o For each diagonal, the offset from the main diagonal is stored

Packet (PKT):
o Reorders rows and columns to concentrate nonzeros into roughly diagonal submatrices
o Thisimproves cache performance as nearby rows access nearby x elements
Dictionary of Keys (DOK):
o Matrix is stored as a map from (row,column) index pairs to values
o This can be useful for building or querying a sparse matrix, but iteration is slow

Compressed Sparse Column (CSC):

o Like CSR, but stores a dense set of sparse column vectors
o Useful For when column sparsity is much more regular than row sparsity

Blocked CSR

o The matrix is divided into blocks stored using CSR with the indices of the upper left corner
o Useful fFor block-sparse matrices

Additional Hybrid Methods:
o Forexample, DIA is very inefficient when there are a small number of mostly-dense
diagonals, but a few additional sparse entries
o Inthis case, a hybrid DIA /COO or DIA / CSR representation can be used

Sparse matrices are hard!

There are a lot of ways to represent sparse matrices

Different representations have different storage requirements

The storage requirements depend differently on the sparsity pattern
There is sometimes a need to safeguard against worst-case input

There is often a trade-off between regularity and efficiency

Some representations are better suited to certain hardware than others

It can be difficult to achieve a high compute-to-global-memory-access ratio

(CGMA) when it comes to sparse matrices

o The above is especially true in the case of SpMV, where each row participates in a separate

computation

If I'm never going to implement my own sparse matrix multiplication, who cares?

e Dealing with data-dependent performance and avoiding irregularity are
common issues in massively-parallel programming

e |Ifit's hard For you to write sparse matrix algorithms that work efficiently in
all cases, it's hard for library implementers as well!

e Knowing the trade-offs can help you make better use of sparse matrix
libraries

https://developer.nvidia.com/cusparse

cuSPARSE is an nVidia library implemented a set of basic linear algebra
subroutines (BLAS)

https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse

Key Features

e Supports dense, COO, CSR, CSC, ELL/HYB and Blocked CSR sparse matrix
formats

Level 1 routines for sparse vector x dense vector operations

Level 2 routines for sparse matrix x dense vector operations

Level 3 routines for sparse matrix x multiple dense vectors (tall matrix)
Routines for sparse matrix by sparse matrix addition and multiplication
Conversion routines that allow conversion between different matrix
formats

Sparse Triangular Solve

Tri-diagonal solver

e Incomplete Factorization preconditioners ilu0 and icO

cuSPARSE offers a fairly low-level API

For the most part, operations are performed on raw data buffers:

(handle, transA, m,
*alpha, descrA,
*csrRowPtrA, *csrColIndA, *X,
*beta, *y);

Full documentation at: http://docs.nvidia.com/cuda/cusparse

n, nnz,
*csrValA,

http://docs.nvidia.com/cuda/cusparse

cuSPARSE

// create the cuSPARSE handle
cusparseCreate(&handle);

// Allocate device memory for vectors and the dense form of matrix A

// Construct a descriptor of the matrix A
cusparseCreateMatDescr(&descr);

cusparseSetMatType(descr, CUSPARSE_MATRIX_TYPE_GENERAL);
cusparseSetMatIndexBase(descr, CUSPARSE_INDEX_BASE_ZERO);

// Transfer the input vectors and dense matrix A to the device

// Compute the number of non-zero elements in A

cusparseSnnz(handle, CUSPARSE_DIRECTION_ROW, M, N, descr, dA, M, dNnzPerRow, &totalNnz);

// Allocate device memory to store the sparse CSR representation of A

// Convert A from a dense format to a CSR format, using the GPU

cusparseSdense2csr(handle, M, N, descr, dA, M, dNnzPerRow, dCsrValA, dCsrRowPtrA, dCsrColIndA);
// Perform matrix-vector multiplication with the CSR-format matrix A

cusparseScsrmv(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, M, N, totalNnz, &alpha, descr, dCsrValA,

dCsrRowPtrA, dCsrColIndA, dX, &beta, dY);

// Copy the result back ot the host
cudaMemcpy(Y, dY, sizeof(float) * M, cudaMemcpyDeviceToHost);

Cheng et al.

CUSP

https://cusplibrary.github.io/

What is CUSP?

Cusp is a library for sparse linear algebra and graph computations based on Thrust. Cusp provides a flexible, high-level interface for manipulating

sparse matrices and solving sparse linear systems.

CUSP is an open source project

It is Focused on solving linear systems, providing a number of conjugate-gradient
solvers

https://cusplibrary.github.io/
https://cusplibrary.github.io/

Supported matrix types:

COO
CSR
DIA
ELL
HYB

CUSP

#include <cusp/csr_matrix.h>
#include <cusp/hyb _matrix.h>

int main() {

// Allocate storage for a 5 by 8 sparse matrix in CSR format with 12

// nonzero entries on the host
cusp::csr_matrix<int,float,cusp::host memory> csr_host(5,8,12);

// Transfer the matrix to the device
cusp::csr_matrix<int,float,cusp::device memory> csr_device(csr_host);

// Convert the matrix to HYB format on the device
cusp::hyb _matrix<int,float,cusp::device memory> csr_device(csr_device);

[https://cusplibrary.github.io/md_quickstart.html]

CUSP

#include <cusp/csr_matrix.h>
#include <cusp/hyb _matrix.h>

int main() {

// Allocate storage for a 5 by 8 sparse matrix in CSR format with 12

// nonzero entries on the host
cusp::csr_matrix<int,float,cusp::host memory> csr_host(5,8,12);

// Transfer the matrix to the device
cusp::csr_matrix<int,float,cusp::device memory> csr_device(csr_host);

// Convert the matrix to HYB format on the device
cusp::hyb _matrix<int,float,cusp::device memory> csr_device(csr_device);

[https://cusplibrary.github.io/md_quickstart.html]

CUSP

// include the csr_matrix header file

#include <cusp/csr_matrix.h>

#include <cusp/print.h>

int main() {
// allocate storage for (4,3) matrix with 4 nonzeros
cusp::csr_matrix<int,float,cusp::host_memory> A(4,3,6);
// initialize matrix entries on host
A.row_offsets[0] = 0; // first offset is always zero

A.row_offsets[1] = 2;

A.row_offsets[2] = 2;

A.row_offsets[3] = 3;

A.row_offsets[4] = 6; // last offset is always num_entries
A.column_indices[0] = 0; A.values[0] = 10;
A.column_indices[1] = 2; A.values[1] = 20;
A.column_indices[2] = 2; A.values[2] = 30;
A.column_indices[3] = 0; A.values[3] = 40;
A.column_indices[4] = 1; A.values[4] = 50;
A.column_indices[5] = 2; A.values[5] = 60;

// A now represents the following matrix
// [10 0 20]
/1l [0 0 0]

/I [6 0630]
/][40 50 60]

// copy to the device
cusp::csr_matrix<int,float,cusp::device_memory> B(A);
cusp::print(B);

[https://cusplibrary.github.io/classcusp_1_1csr__matrix.html]

Provides a number of matrix operations:
e Matrix addition

Transposition

SpMV

Matrix-matrix multiplication

Generic element-wise operations

etc.

Bell, Nathan, and Michael Garland. Efficient sparse matrix-vector multiplication
on CUDA. Vol. 2. No. 5. Nvidia Technical Report NVR-2008-004, Nvidia
Corporation, 2008.

Cheng, John, Max Grossman, and Ty McKercher. Professional Cuda C
Programming. John Wiley & Sons, 2014.

Hwu, Wen-mei, and David Kirk. "Programming massively parallel processors."
Special Edition 92 (2009).

