
CSE 599 I
Accelerated Computing -

Programming GPUS
Parallel Patterns: Graph Search

Objective

● Study graph search as a prototypical graph-based algorithm
● Learn techniques to mitigate the memory-bandwidth-centric nature of

graph-based algorithms
● Introduce work queues and see how they fit into a massively parallel

programming framework

Data Parallelism / Data-Dependent Execution

Stencil
Histogram

SpMV

Prefix Scan

Data
Parallel

Not
Data

Parallel

Data-DependentData-Independent

Merge
Graph Search

Massive Graph Applications

● Social media connection graphs
● Driving directions
● Telecommunication networks
● Manufacturing process dependencies
● Computation graph
● 3D Meshes
● Graphical models

Massive graphs tend to be sparse!

Graph Review

0

1

2

7

6

5

4

3

8

Graph

0 1 2 3 4 5 6 7 8

0 1 1

1 1 1

2 1 1 1

3 1 1

4 1 1

5 1

6 1

7 1 1

8

Adjacency Matrix

Column Indices

Graph Review

0

1

2

7

6

5

4

3

8

Graph

Adjacency Matrix
(CSR)

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Values

1

2

3

4

5

6

7

4

8

5

8

6

8

0

6

0

2

4

7

9

11

12

13

15

15

Row PointersDestinations

Breadth-First Search

Problem:

Given a source node S, find the number of steps required to reach each
node N in the graph

Given this labelling of the graph, one can easily find a shortest path from S to a
destination T

Breadth First Search

0

Source = 0
Round 0

0:

1:

2:

3:

4:

5:

6:

7:

8:

Breadth First Search

0

1

1

Source = 0
Round 1

0:

1:

2:

3:

4:

5:

6:

7:

8:

4:

Breadth First Search

0

1

1

2

2

2

2

2

Source = 0
Round 2

0:

1:

2:

3:

5:

6:

7:

8:

Breadth First Search

0

1

1

2

2

2

2

2

3

Source = 0
Round 3

0:

1:

2:

3:

4:

5:

6:

7:

8:

Breadth First Search

0

1

1

2

2

2

2

2

3

Source = 0

0:

1:

2:

3:

4:

5:

6:

7:

8:

2:

Breadth First Search

0

Source = 2
Round 0

0:

1:

3:

4:

5:

6:

7:

8:

2:

Breadth First Search

0

1

1

1

Source = 2
Round 1

0:

1:

3:

4:

5:

6:

7:

8:

2:

Breadth First Search

2

0

1

1

1

2

Source = 2
Round 2

0:

1:

3:

4:

5:

6:

7:

8:

2:

Breadth First Search

2

3

0

1

1

1

2

Source = 2
Round 3

0:

1:

3:

4:

5:

6:

7:

8:

4:

2:

Breadth First Search

2

3

0

1

1

1

4

4

2

Source = 2
Round 4

0:

1:

3:

5:

6:

7:

8:

2:

Breadth First Search

2

3

0

1

1

1

4

4

2

Source = 2

0:

1:

3:

4:

5:

6:

7:

8:

Sequential BFS

Most computer scientists are familiar with C++ / Java / Python / etc - style BFS
implementations using language - provided data structures (e.g. queue)

We’ll look at a C-style implementation to ease the translation into CUDA

Sequential BFS

void BFS_sequential(int source, const int * rowPointers, const int * destinations, int * distances) {

int frontier[2][MAX_FRONTIER_SIZE];
int * currentFrontier = &frontier[0];
int currentFrontierSize = 0;
int * previousFrontier = &frontier[1];
int previousFrontierSize = 0;

insertIntoFrontier(source, previousFrontier, &previousFrontierSize);
distances[source] = 0;

while (previousFrontierSize > 0) {
// visit all vertices on the previous frontier
for (int f = 0; f < previousFrontierSize; f++) {

const int currentVertex = previousFrontier[f];
// check all outgoing edges
for (int i = rowPointers[currentVertex]; i < rowPointers[currentVertex+1]; ++i) {

if (distances[destinations[i]] == -1) {
// this vertex has not been visited yet
insertIntoFrontier(destinations[i], currentFrontier, ¤tFrontierSize);
distances[destinations[i]] = distances[currentVertex] + 1;

}
}

}
swap(currentFrontier, previousFrontier);
previousFrontierSize = currentFrontierSize;
currentFrontierSize = 0;

}

}

In practice, we’d want to check for
and handle overflow here

Sequential BFS

void insertIntoFrontier(int vertex, int * frontier, int * frontierSize) {

frontier[*frontierSize] = vertex;
++(*frontierSize);

}

One Parallelization Approach

● Assign one thread per vertex
● For each iteration, check all incoming edges to see if the source vertex was

just visited in the last iteration; if so, mark as visited in this iteration

● Not very work efficient; O(VL) for V = number of vertices, L = length of
longest path

● Difficult to detect stopping criterion

A More Work-Efficient Approach

● Parallelize each individual iteration of the while loop in the sequential BFS
code

● Assign a section of the vertices in the previous frontier to each thread
● Introduce a synchronization point at the end of each iteration

Parallel BFS Host Code
void BFS_host(int source, const int * rowPointers, const int * destinations, int * distances) {

int dFrontier[2][MAX_FRONTIER_SIZE];
int * dCurrentFrontierSize;
int * dPreviousFrontierSize; int hPreviousFrontierSize;
int * dVisited;

int * dCurrentFrontier = &frontier[0];
int * dPreviousFrontier = &frontier[1];

// allocate device memory, copy memory from device to host, initialize frontier sizes, etc.
...

hPreviousFrontierSize = 1;

while (hPreviousFrontierSize > 0) {
int numBlocks = (hPreviousFrontierSize-1) / BLOCK_SIZE + 1;

BFS_Bqueue_kernel<<<numBlocks, BLOCK_SIZE>>>(dPreviousFrontier, dPreviousFrontierSize,
dCurrentFrontier, dCurrentFrontierSize,
dRowPointers, dDestinations, dDistances, dVisited);

swap(dCurrentFrontier,dPreviousFrontier);
cudaMemcpy(dPreviousFrontierSize, dCurrentFrontierSize, sizeof(int), cudaMemcpyDeviceToDevice);
cudaMemset(dCurrentFrontierSize, 0, sizeof(int));

cudaMemcpy(&hPreviousFrontierSize, dPreviousFrontierSize, sizeof(int), cudaMemcpyDeviceToHost);

}

}

Output Interference in BFS

1

1

0

● We’ll use flags to mark whether or not a vertex has been visited
● From a correctness perspective, output interference on flags can be ignored
● However, this will lead to additional work

A

B

C

Previous queue: A B

Current queue:

Without synchronization:

alreadyVisited? 0

alreadyVisited? 0

1

1
1

C C

1

1

0

A

B

C

Previous queue: A B

Current queue:

With atomicExch:

alreadyVisited? 1

alreadyVisited? 0

1

1
1

C

Basic Parallel BFS Kernel
__global__ void BFS_Bqueue_kernel(const int * previousFrontier, const int * previousFrontierSize,
 int * currentFrontier, int * currentFrontierSize, const int * rowPointers,
 const int * destinations, int * distances, int * visited) {

const int t = threadIdx.x + blockDim.x * blockIdx.x;
if (t < *previousFrontierSize) {

const int vertex = previousFrontier[t];
for (int i = rowPointers[vertex]; i < rowPointers[vertex+1]; ++i) {

// check visitation atomically, avoiding redundant expansion
const int alreadyVisited = atomicExch(&(visited[destinations[i]]),1);
if (!alreadyVisited) {

// we’re visiting a new vertex: get a spot in line atomically
const int queueIndex = atomicAdd(currentFrontierSize, 1);

// place the vertex in line line
currentFrontier[queueIndex] = destinations[i];

}
}

}
__syncthreads();

}

Output Interference in Frontier Queue

● There is also output interference in placing vertices in the queue
● Synchronization is strictly required here for correct output
● This is a bottleneck of the basic kernel

0

...Block 0 Block 1 Block N

12

Privatization of the Frontier Queue

● We can make a private, block-level copy of the frontier queue
● Once complete, the private queues are combined to form the global queue

0

...

0 0

0

Block 0 Block NBlock 1

1 1 1222

2

3 34

310

Parallel BFS Kernel with Privatization
__global__ void BFS_Bqueue_kernel(const int * previousFrontier, const int * previousFrontierSize,
 int * currentFrontier, int * currentFrontierSize, const int * rowPointers,
 const int * destinations, int * distances, int * visited) {

__shared__ int sharedCurrentFrontier[BLOCK_QUEUE_SIZE];
__shared__ int sharedCurrentFrontierSize, blockGlobalQueueIndex;

if (threadIdx.x == 0) sharedCurrentFrontierSize = 0;
__syncthreads();

const int t = threadIdx.x + blockDim.x * blockIdx.x;
if (t < *previousFrontierSize) {

const int vertex = previousFrontier[t];
for (int i = rowPointers[vertex]; i < rowPointers[vertex+1]; ++i) {

const int alreadyVisited = atomicExch(&(visited[destinations[i]]),1);
if (!alreadyVisited) {

distances[destinations[i]] = distances[i] + 1;
const int sharedQueueIndex = atomicAdd(&sharedCurrentFrontierSize,1);
if (sharedQueueIndex < BLOCK_QUEUE_SIZE) { // there is space in the local queue
 sharedCurrentFrontier[sharedQueueIndex] = destinations[i];
} else { // go directly to the global queue

sharedCurrentFrontierSize = BLOCK_QUEUE_SIZE;
const int globalQueueIndex = atomicAdd(currentFrontierSize, 1);
currentFrontier[globalQueueIndex] = destinations[i];

}
}

}
}
__syncthreads();

if (threadIdx.x == 0) blockGlobalQueueIndex = atomicAdd(currentFrontierSize, sharedCurrentFrontierSize);
__syncthreads();

for (int i = threadIdx.x; i < sharedCurrentFrontierSize; i += blockDim.x) {
currentFrontier[blockGlobalQueueIndex + i] = sharedCurrentFrontier[i];

}
}

Remaining Issues

● Irregular global memory access
○ Access patterns depend on graph structure and is unpredictable

● Kernel launch overhead
○ There is little parallel work in iterations with narrow frontiers

● Block-level queue length counter contention
○ Better than before, but there will still be many serialized atomic operations

● Load imbalance
○ Vertices can have vastly different numbers of outgoing edges

BFS Results in Highly Irregular Memory Access

0 6

0 2 4 7 9 10 13 16 17 20 21

2 5 5 6 0 4 5 2 5 7 1 2 4 4 8

1 1 0 0 0 0 1 1 0 0 0visited

destinations

rowPointers

previousFrontier

...

...

...

Global Memory Bandwidth Limitations Got You
Down?

Is the usage pattern
known, local, and not

more than ~48KB?

Is read-only memory
OK?

n

Shared
memory!y

Is it less than ~64KB? y

Hope you’ve
been nice to your

L2 cache...

n

Constant
memory!

y

Texture
memory!n

Texture Memory

● Texture memory is another form of global memory
● Like constant memory, it is aggressively cached for read-only access
● Originally developed and optimized for storing and reading textures for

graphics applications
○ Has hardware-level support for 1-,2-, or3-D layouts and interpolated reads
○ The texture cache is also spatial layout-aware

● Can be useful for irregular access patterns with un-coalesced reads

Using Texture Memory

Declaration:

texture<int, 1, cudaReadModeElementType> rowPointersTexture;

Host side:

int * hRowPointers;
int rowPointersLength;
cudaArray * texArray = 0;

cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<int>();

cudaMallocArray(&texArray, &channelDesc, rowPointersLength);

cudaMemcpyToArray(texArray, 0, 0, hRowPointers,
 rowPointersLength*sizeof(int), cudaMemcpyHostToDevice);

cudaBindTextureToArray(rowPointersTexture, texArray);

Device side:

for (int i = tex1D(rowPointersTexture,vertex); i < tex1D(rowPointersTexture,vertex+1); ++i)
...

Remaining Issues

● Irregular global memory access
○ Access patterns depend on graph structure and is unpredictable

● Kernel launch overhead
○ There is little parallel work in iterations with narrow frontiers

● Block-level queue length counter contention
○ Better than before, but there will still be many serialized atomic operations

● Load imbalance
○ Vertices can have vastly different numbers of outgoing edges

✔

Kernel Launch Overhead

For some iterations of BFS (especially near the beginning), the frontier can be
quite small

The benefits of parallelism only outweigh the kernel launch overhead when the
frontier becomes large enough

Some options:

1. Use the CPU if the frontier size dips below some threshold
2. Create a single-block variant of the BFS kernel that iterates until its

block-level queue is full before returning to the host

Using the CPU for Small Frontiers

// is the most up-to-date frontier information on host or device?
bool currentDataOnDevice = false;

while (hPreviousFrontierSize > 0) {
int numBlocks = (hPreviousFrontierSize-1) / BLOCK_SIZE + 1;

if (numBlocks < NUM_BLOCKS_THRESHOLD) {
if (currentDataOnDevice) {

// copy data to host
...

}
BFS_iterate_sequential(hPreviousFrontier, hPreviousFrontierSize,

 hCurrentFrontier, hCurrentFrontierSize,
 rowPointers, destinations, distances);

currentDataOnDevice = false;

} else {
if (!currentDataOnDevice) {

// copy data to device
...

}
BFS_Bqueue_kernel<<<numBlocks, BLOCK_SIZE>>>(dPreviousFrontier, dPreviousFrontierSize,

dCurrentFrontier, dCurrentFrontierSize,
dRowPointers, dDestinations, dDistances, dVisited);

currentDataOnDevice = true;

}

...

Remaining Issues

● Irregular global memory access
○ Access patterns depend on graph structure and is unpredictable

● Kernel launch overhead
○ There is little parallel work in iterations with narrow frontiers

● Block-level queue length counter contention
○ Better than before, but there will still be many serialized atomic operations

● Load imbalance
○ Vertices can have vastly different numbers of outgoing edges

✔
✔

Block-Level Queue Contention

While the block-level queues reduced contention for global memory, the
block-level counter is now the bottleneck

We can extend the hierarchy by further splitting the block-level queue

Three-Level Queue Hierarchy

Global queue:

Block 0

Block queue:

Sub-queue 0: Sub-queue 1:

Sub-queue 2: Sub-queue 3:

Block 1

Block queue:

Sub-queue 0: Sub-queue 1:

Sub-queue 2: Sub-queue 3:

Sub-Queue Assignment

Sub-queue 0: Sub-queue 1: Sub-queue 2: Sub-queue 3:

0 1 2 3 4 5 6 7 120 121 122 123 124 125 126 127...threadidx.x:

subQueueIndex = threadIdx.x / (blockDim.x / NUM_SUB_QUEUES);

This mapping means threads in the same
warp will be using the same queue!

Sub-Queue Assignment

Sub-queue 0: Sub-queue 1: Sub-queue 2: Sub-queue 3:

0 1 2 3 4 5 6 7 120 121 122 123 124 125 126 127...threadidx.x:

subQueueIndex = threadIdx.x % NUM_SUB_QUEUES;

Much better!

threadIdx.x & (NUM_SUB_QUEUES-1);

Shortcut if the number of queues is a power of 2

Remaining Issues

● Irregular global memory access
○ Access patterns depend on graph structure and is unpredictable

● Kernel launch overhead
○ There is little parallel work in iterations with narrow frontiers

● Block-level queue length counter contention
○ Better than before, but there will still be many serialized atomic operations

● Load imbalance
○ Vertices can have vastly different numbers of outgoing edges

✔
✔
✔

Load Imbalance

Load imbalance is caused by a data dependency and is thus tricky to avoid

Two potential strategies:

1. Delay the assignment of work to threads until after the total amount of
work to be done is known

2. Spawn new threads when needed to account for additional work

Tune in to the next lecture on
CUDA dynamic parallelism!

This could result in additional
code complexity, higher
register usage, and / or more
synchronization

Conclusion / Takeaways

● Graphs can be processed in parallel!
● Texture memory can help with large, read-only memory w/ irregular access
● Work queues can be used to track tasks of varying size
● Privatization (and multi-level privatization hierarchies) can be used to

reduce contention for work queue insertion

Sources

https://www.wikipedia.org/

Cheng, John, Max Grossman, and Ty McKercher. Professional Cuda C
Programming. John Wiley & Sons, 2014.

Hwu, Wen-mei, and David Kirk. "Programming massively parallel processors."
Special Edition 92 (2009).

Wilt, Nicholas. The cuda handbook: A comprehensive guide to gpu programming.
Pearson Education, 2013.

