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Objective

● Take a slightly lower-level view of the CPU / GPU interface
● Learn about different CPU / GPU communication techniques



A Prototypical High-Level PC Architecture
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Peripheral Component Interconnect Express (PCI-e)

A high-throughput serial expansion bus

Transfers data over 1, 2, 4, 8, 16, or 32 (GPUs generally use PCI-e x16)

PCI-e Version Year x16 Throughput

1.0 2003 4 GB / s

2.0 2007 8 GB / s

3.0 2010 15.8 GB / s

4.0 2017 (expected) 31.5 GB / s



GTX 1080 Ti

PCI-e 3.0 x16
cudaMemcpy comes through here!



Review: Physical Addressing

● Physical addressing assigns consecutive numbers 
(i.e. addresses) to consecutive memory locations, 
from 0 to the size of the memory

● One byte addressing is typical

● In the memory shown, bytes are assigned 
addresses 0 - 65535
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Review: Virtual Addressing

A virtual address points into a virtual address space that does not have a fixed 
1-1 mapping to physical memory

Virtual address spaces can be much larger than available physical memory

Virtual addresses are typically divided into pages of at least 4096 bytes



Review: Virtual Addressing
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Why?

Can support larger memories than are physically available

Page-level permissions information makes “sandboxing” of separate processes 
easier

Multiple physical memories, files, and I/O devices can be mapped into a virtual 
memory space



Review: Demand Paging
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CUDA Virtual Addressing

● CUDA supports virtual addressing such that CUDA processes cannot 
“accidentally” read each others’ data

● CUDA does not support demand paging 
○ every byte of virtual memory must be backed up by a byte of physical memory

● Traditionally, CUDA and CPU address spaces were completely separate



Direct Memory Access (DMA)
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DMA Danger
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Pinned Memory

Pinned memory (akak page-locked memory) is a part of the virtual address space 
that is “pinned” to a part of the physical space

Pinned memory cannot be “paged out”

The DMA uses pinned memory for data transfer



cudaMemcpy Uses Pinned Memory
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Cutting out the Middleman

You can allocate a host buffer in pinned memory directly:

cudaHostAlloc(&hBuffer, size, cudaHostAllocDefault);

...

cudaMemcpy(dBuffer, hBuffer, size, cudaMemcpyHostToDevice);

...

cudaHostFree(hBuffer);

This eliminates the extra copy to pinned memory

Keep in mind that pinned memory is a limited resource



Zero-Copy Memory

Introduced as part of CUDA 2.2 in 2009

Allows mapping pinned host memory into the CUDA address space

Values are copied from the pinned memory to the device as they are requested

There is no caching

Writing simultaneously to zero-copy memory from both host and device leads to 
undefined behavior



Zero-Copy Memory Setup

cudaSetDeviceFlags(cudaDeviceMapHost);

cudaSetDevice( deviceNumber );

cudaDeviceProp deviceProperties;
cudaGetDeviceProperties(&deviceProperties, deviceNumber);

if (!deviceProperties.canMapHostMemory) {
printf(“Device %d does not support mapped memory\n”);
exit(EXIT_FAILURE);

}



Vector Addition with Zero-Copy Memory

cudaHostAlloc(&h_A, N * sizeof(float), cudaHostAllocMapped);
cudaHostAlloc(&h_B, N * sizeof(float), cudaHostAllocMapped);

// copy input data to h_A and h_B
...

cudaHostGetDevicePointer(&d_A, h_A, 0);
cudaHostGetDevicePointer(&d_B, h_B, 0);
cudaMalloc(&d_C, N * sizeof(float));

// set up grid
...

vectorAdditionKernel<<<grid, block>>>(d_A, d_B, d_C, N);

// use results in d_C
...

cudaFreeHost(h_A);
cudaFreeHost(h_B);
cudaFree(d_C);



An Alternative: Register Pre-Allocated Memory

One can also page-lock an existing buffer:

float * h_A;

cudaHostRegister(h_A, N * sizeof(float), cudaHostRegisterDefault);

...

cudaHostUnregister(h_A);

Could also be 
cudaHostRegisterMapped



Zero-Copy Memory Tradeoffs

● Simplifies code by removing explicit data transfer
● Allows dynamic overlap of transfer and computation
● Can be extremely efficient for integrated graphics
● Can be used to process more data than fits in device memory

● No caching
● Must synchronize memory writes with the host
● Overuse of pinned memory can slow down the host



When to Use Zero-Copy Memory on Discrete GPUs

● When the data will be read or written only once
● When the reads will all be coalesced



Unified Virtual Addressing (UVA)

Introduced as part of CUDA 4 in 2011

Supported on 64-bit systems and devices with compute capability at least 2.0

All addresses are in the same address space 

The runtime API call cudaPointerGetAttributes() can be used to determine 
whether a pointer points to host or device memory

You still can’t dereference a host pointer on the device or vice versa (unless it’s 
mapped memory)



Unified Virtual Addressing (UVA)
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Unified Memory

Introduced as part of CUDA 6 in 2013

Dependent on Unified Virtual Addressing, but not the same thing

Extends UVA with the ability to have managed memory, which is automatically 
migrated between host and device



Vector Addition With Unified Memory

cudaMallocManaged(&A, N * sizeof(float));
cudaMallocManaged(&B, N * sizeof(float));
cudaMallocManaged(&C, N * sizeof(float));

// copy input data to h_A and h_B
...

// set up grid
...

vectorAdditionKernel<<<grid, block>>>(A, B, C, N);

// C is able to be dereferenced from the host
...

cudaFree(A);
cudaFree(B);
cudaFree(C);



Managed Static Memory

Static memory can also be managed:

__device__ __managed__ int sum;

Can be useful for seamlessly transferring results back from, e.g., a reduction



Advantages of Unified Memory

● Much simpler code
○ No longer any need for duplicate pointers
○ No longer any need for explicit memory transfer

● Can naturally use more complicated data structures more naturally
○ Deep copies no longer needed for pointers to structures containing pointers
○ For example, you can construct a linked list on the host and traverse it on the device



Linked List without Unified Memory
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Linked List with Unified Memory

Unified memory
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next

data
next

Nodes are allocated in unified memory

All pointers (head and all next pointers) are accessible on host and device

We can construct the list on the host, pass head to the device, and simply traverse
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Performance of Unified Memory

● Can be nearly as fast as explicitly managed  memory
● Until very recently, kernel launches caused all host-resident pages to be 

flushed to the GPU
● The Pascal architecture (2016) includes support for GPU page faults 

○ A kernel can be launched with memory resident on the host
○ Page faults cause memory to be migrated to the GPU as needed



Conclusion / Takeaways

● cudaMemcpy requires data on the host to be in pinned memory
○ If the data is not already in pinned memory, the CUDA runtime will copy it to pinned memory 

and then to the device

● There are a number of options for transferring data from CPU to GPU with 
different ease of use and performance 

● The CUDA CPU / GPU interface has been (and still is) evolving over time
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