
CSE 599 I
Accelerated Computing -

Programming GPUS
Advanced Host / Device Interface

Objective

● Take a slightly lower-level view of the CPU / GPU interface
● Learn about different CPU / GPU communication techniques

A Prototypical High-Level PC Architecture

CPU
Memory

GPU

GPU Memory

To I/O devices, peripherals, etc.

CPU

PCI-e

Peripheral Component Interconnect Express (PCI-e)

A high-throughput serial expansion bus

Transfers data over 1, 2, 4, 8, 16, or 32 (GPUs generally use PCI-e x16)

PCI-e Version Year x16 Throughput

1.0 2003 4 GB / s

2.0 2007 8 GB / s

3.0 2010 15.8 GB / s

4.0 2017 (expected) 31.5 GB / s

GTX 1080 Ti

PCI-e 3.0 x16
cudaMemcpy comes through here!

Review: Physical Addressing

● Physical addressing assigns consecutive numbers
(i.e. addresses) to consecutive memory locations,
from 0 to the size of the memory

● One byte addressing is typical

● In the memory shown, bytes are assigned
addresses 0 - 65535

0

1

2

3

4

5

6

65535

65534

65533

65532

...

64 KB
Physical Memory

Review: Virtual Addressing

A virtual address points into a virtual address space that does not have a fixed
1-1 mapping to physical memory

Virtual address spaces can be much larger than available physical memory

Virtual addresses are typically divided into pages of at least 4096 bytes

Review: Virtual Addressing

64 KB
Physical Memory

0

4096

8192

12288

...
53248

57344

61440

Virtual Memory

...

Address

page offset

0

4096

12288

16384

20480

24576

503808

507904

512000

516096

520192

This is not a real
memory location!

12288

0

1

2

3

4

5

123

124

125

126

127

...

Page Table

Why?

Can support larger memories than are physically available

Page-level permissions information makes “sandboxing” of separate processes
easier

Multiple physical memories, files, and I/O devices can be mapped into a virtual
memory space

Review: Demand Paging

64 KB
Physical Memory

0

4096

...
53248

57344

61440

Virtual Memory

...

Address

page offset

0

4096

12288

16384

20480

24576

503808

507904

512000

516096

520192

0

1

2

3

4

5

123

124

125

126

127

...

Page Table

Page fault!

To disk

From disk8192

12288

CUDA Virtual Addressing

● CUDA supports virtual addressing such that CUDA processes cannot
“accidentally” read each others’ data

● CUDA does not support demand paging
○ every byte of virtual memory must be backed up by a byte of physical memory

● Traditionally, CUDA and CPU address spaces were completely separate

Direct Memory Access (DMA)

CPU
Memory

GPU

GPU Memory

To I/O devices, peripherals, etc.

CPU

PCI-e

DMA

DMA Danger

64 KB
Physical Memory

0

4096

...
53248

57344

61440

cudaMemcpy(, , N, cudaMemcpyHostToDevice);

Section of Device
Memory

DMA
To disk

From disk

oops...

8192

12288

Pinned Memory

Pinned memory (akak page-locked memory) is a part of the virtual address space
that is “pinned” to a part of the physical space

Pinned memory cannot be “paged out”

The DMA uses pinned memory for data transfer

cudaMemcpy Uses Pinned Memory

64 KB
Physical Memory

0

4096

...
53248

57344

61440

cudaMemcpy(, , N, cudaMemcpyHostToDevice);

Section of Device
Memory

DMA
To disk

From disk8192

12288

Cutting out the Middleman

You can allocate a host buffer in pinned memory directly:

cudaHostAlloc(&hBuffer, size, cudaHostAllocDefault);

...

cudaMemcpy(dBuffer, hBuffer, size, cudaMemcpyHostToDevice);

...

cudaHostFree(hBuffer);

This eliminates the extra copy to pinned memory

Keep in mind that pinned memory is a limited resource

Zero-Copy Memory

Introduced as part of CUDA 2.2 in 2009

Allows mapping pinned host memory into the CUDA address space

Values are copied from the pinned memory to the device as they are requested

There is no caching

Writing simultaneously to zero-copy memory from both host and device leads to
undefined behavior

Zero-Copy Memory Setup

cudaSetDeviceFlags(cudaDeviceMapHost);

cudaSetDevice(deviceNumber);

cudaDeviceProp deviceProperties;
cudaGetDeviceProperties(&deviceProperties, deviceNumber);

if (!deviceProperties.canMapHostMemory) {
printf(“Device %d does not support mapped memory\n”);
exit(EXIT_FAILURE);

}

Vector Addition with Zero-Copy Memory

cudaHostAlloc(&h_A, N * sizeof(float), cudaHostAllocMapped);
cudaHostAlloc(&h_B, N * sizeof(float), cudaHostAllocMapped);

// copy input data to h_A and h_B
...

cudaHostGetDevicePointer(&d_A, h_A, 0);
cudaHostGetDevicePointer(&d_B, h_B, 0);
cudaMalloc(&d_C, N * sizeof(float));

// set up grid
...

vectorAdditionKernel<<<grid, block>>>(d_A, d_B, d_C, N);

// use results in d_C
...

cudaFreeHost(h_A);
cudaFreeHost(h_B);
cudaFree(d_C);

An Alternative: Register Pre-Allocated Memory

One can also page-lock an existing buffer:

float * h_A;

cudaHostRegister(h_A, N * sizeof(float), cudaHostRegisterDefault);

...

cudaHostUnregister(h_A);

Could also be
cudaHostRegisterMapped

Zero-Copy Memory Tradeoffs

● Simplifies code by removing explicit data transfer
● Allows dynamic overlap of transfer and computation
● Can be extremely efficient for integrated graphics
● Can be used to process more data than fits in device memory

● No caching
● Must synchronize memory writes with the host
● Overuse of pinned memory can slow down the host

When to Use Zero-Copy Memory on Discrete GPUs

● When the data will be read or written only once
● When the reads will all be coalesced

Unified Virtual Addressing (UVA)

Introduced as part of CUDA 4 in 2011

Supported on 64-bit systems and devices with compute capability at least 2.0

All addresses are in the same address space

The runtime API call cudaPointerGetAttributes() can be used to determine
whether a pointer points to host or device memory

You still can’t dereference a host pointer on the device or vice versa (unless it’s
mapped memory)

Unified Virtual Addressing (UVA)

Before UVA UVA

CPU
Addresses

0

N-1

GPU 0
Addresses

0

M-1

GPU 1
Addresses

0

M-1

CPU
Addresses

GPU 0
Addresses

GPU 1
Addresses

0

N

N + M

N + 2M - 1

Unified Memory

Introduced as part of CUDA 6 in 2013

Dependent on Unified Virtual Addressing, but not the same thing

Extends UVA with the ability to have managed memory, which is automatically
migrated between host and device

Vector Addition With Unified Memory

cudaMallocManaged(&A, N * sizeof(float));
cudaMallocManaged(&B, N * sizeof(float));
cudaMallocManaged(&C, N * sizeof(float));

// copy input data to h_A and h_B
...

// set up grid
...

vectorAdditionKernel<<<grid, block>>>(A, B, C, N);

// C is able to be dereferenced from the host
...

cudaFree(A);
cudaFree(B);
cudaFree(C);

Managed Static Memory

Static memory can also be managed:

__device__ __managed__ int sum;

Can be useful for seamlessly transferring results back from, e.g., a reduction

Advantages of Unified Memory

● Much simpler code
○ No longer any need for duplicate pointers
○ No longer any need for explicit memory transfer

● Can naturally use more complicated data structures more naturally
○ Deep copies no longer needed for pointers to structures containing pointers
○ For example, you can construct a linked list on the host and traverse it on the device

Linked List without Unified Memory

Host Memory

Device Memory

hHead
data
next

data
next

data
next

dHead

data
next

We can allocate this
with cudaMalloc

We need to launch a kernel
to set this!
dHead->next is inaccessible
from the host

cudaHostAlloc() cudaHostAlloc() cudaHostAlloc()

cudaMalloc()

Linked List with Unified Memory

Unified memory

head
data
next

data
next

data
next

Nodes are allocated in unified memory

All pointers (head and all next pointers) are accessible on host and device

We can construct the list on the host, pass head to the device, and simply traverse

cudaMallocManaged() cudaMallocManaged() cudaMallocManaged()

Performance of Unified Memory

● Can be nearly as fast as explicitly managed memory
● Until very recently, kernel launches caused all host-resident pages to be

flushed to the GPU
● The Pascal architecture (2016) includes support for GPU page faults

○ A kernel can be launched with memory resident on the host
○ Page faults cause memory to be migrated to the GPU as needed

Conclusion / Takeaways

● cudaMemcpy requires data on the host to be in pinned memory
○ If the data is not already in pinned memory, the CUDA runtime will copy it to pinned memory

and then to the device

● There are a number of options for transferring data from CPU to GPU with
different ease of use and performance

● The CUDA CPU / GPU interface has been (and still is) evolving over time

Sources

https://www.wikipedia.org/

CUDA C Best Practices Guide.
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/#axzz4fVWqoMTH

Cheng, John, Max Grossman, and Ty McKercher. Professional Cuda C
Programming. John Wiley & Sons, 2014.

Hwu, Wen-mei, and David Kirk. "Programming massively parallel processors."
Special Edition 92 (2009).

Wilt, Nicholas. The cuda handbook: A comprehensive guide to gpu programming.
Pearson Education, 2013.

