
CSE 599 I
Accelerated Computing - 

Programming GPUS
Streams, Events, and Concurrency



Objective

● Learn about when and how to use CUDA streams and events
● Study strategies to maximize concurrency of host and device computation 

and data transfers



Beyond Kernel-Level Concurrency

● Host Computation / Device Computation
● Device Computation / Host-Device Transfer 
● Host Computation / Host-Device Transfer 
● Device / Device Computation 



A Typical Scenario

1. Copy input data from the host to the device
2. Process the input data
3. Copy the results from the device back to the host



Host / Device Computation Concurrency

This is the easiest type of concurrency to achieve

A common pattern is:

1. A host thread launches a kernel
2. The host thread does some additional work as the kernel executes
3. The host synchronizes with the device and gets the results



SpMV / HYB Revisited

void hybridSpMV(const float * A, const int M, const int N const float * x, float * y) {

float * d_y;
float * d_x;
float * y_ELL;
SparseMatrixELL d_A_ELL;
SparseMatrixCOO A_COO;

// build sparse matrix representations, allocate / initialize host and device memory
...

// launch ELL kernel
SpMV_ELL_kernel<<<(A.M + 127)/128,128>>>(d_A_ELL, d_x, d_y);

// perform host computation
SpMV_COO(A_COO, x, y);

// copy device result back to host
cudaMemcpy(y_ELL, d_y, A.N * sizeof(float) );

for (int i = 0; i < A.N; ++i) {
y[i] += y_ELL[i];

}

}

These happen concurrently

The host blocks here until the 
kernel launch is complete



Introducing CUDA Streams

A CUDA stream is an ordered sequence of kernel launches and CUDA runtime 
API calls that are all executed sequentially, with no overlap (i.e. FIFO queue)

Work in different CUDA streams can (sometimes) be performed in parallel

Every kernel launch and CUDA runtime API call is in some stream



Explicitly vs. Implicitly Declared Streams

A kernel launch or runtime API call that does not explicitly declare a stream is 
issued in the default stream

Non-default streams must be explicitly created and managed

Achieving coarse-grained concurrency requires the use of explicitly declared 
streams



Synchronization in the Default Stream
Synchronous:
These will begin 
when all prior jobs in 
the stream are 
complete and return 
when the copy is 
done

Asynchronous:
This will return 
immediately

Synchronous:
This will begin when 
the kernel is 
complete and return 
when the copy is 
done

All of these will issue in the default stream

cudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice);

vectorAdditionKernel<<<grid, block>>>(d_A, d_B, d_C, N);

cudaMemcpy(h_C, d_C, N * sizeof(float), cudaMemcpyHostToDevice);



Asynchronous Data Transfer

The host will return immediately from all four of these calls:

cudaMemcpyAsync(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpyAsync(d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice);

vectorAdditionKernel<<<grid, block>>>(d_A, d_B, d_C, N);

cudaMemcpyAsync(h_C, d_C, N * sizeof(float), cudaMemcpyHostToDevice);

One caveat: cudaMemcpyAsync() requires pinned memory



Explicit Streams

cudaError_t
cudaMemcpyAsync(void * dst, const void * src, size_t count, cudaMemcpyKind kind, 

 cudaStream_t stream = 0);

This is a common parameter for asynchronous runtime API calls

Using the default value for stream (i.e. 0) issues the call in the default stream



Creating Explicit Streams

cudaStream_t stream;

cudaStreamCreate(&stream);

// use stream as a parameter to asynchronous API calls

...

cudaMemcpyAsync(...,stream);

...

cudaStreamDestroy(stream);



Maintaining Occupancy

SM 0 SM 1 SM 2 SM 3

Blocks To Be Scheduled:



Maintaining Occupancy

SM 0 SM 1 SM 2 SM 3

Blocks To Be Scheduled:

Small grids leave a lot of 
computation resources idle



Increased Concurrency with Streams

void batchVectorAdd(float * * As, float * * Bs, float * * Cs, int * Ns, int count) {

cudaStream_t * streams = new cudaStream_t[count];
float * * d_As = new float *[count];
float * * d_Bs = new float *[count];
float * * d_Cs = new float *[count];

// make sure host pointers are in pinned memory, allocate device memory
...

for (int i = 0; i < count; ++i) {

// set up grid and block
...

cudaStreamCreate(&streams[i]);
cudaMemcpyAsync(d_As[i], As[i], Ns[i] * sizeof(float), cudaMemcpyHostToDevice, streams[i]);
cudaMemcpyAsync(d_Bs[i], Bs[i], Ns[i] * sizeof(float), cudaMemcpyHostToDevice, streams[i]);
vectorAddKernel<<<grid,block,0,streams[i]>>>(d_As[i], d_Bs[i], d_Cs[i], Ns[i]);
cudaMemcpyAsync(Cs[i], d_Cs[i], Ns[i] * sizeof(float), cudaMemcpyDeviceToHost, streams[i]);

}

for (int i = 0; i < count; ++i) {
cudaStreamSynchronize(streams[i]);
cudaStreamDestroy(streams[i]);

}

delete [] streams; delete [] d_As; delete [] d_Bs; delete [] d_Cs;

}



Device / Device Computation Concurrency

SM 0 SM 1 SM 2 SM 3

Blocks To Be Scheduled:



Device Computation / Host-Device Transfer 
Concurrency

Modern CUDA devices have two copy engines
 
One host-to-device transfer and one device-to-host transfer can happen 
concurrently



batchVectorAdd Device Execution Timeline

Without Explicit Streams:

H2D Kernel
Default 
Stream:

H2D Kernel D2H H2D Kernel D2H

With Explicit Streams:

H2D Kernel D2HStream 0:

H2D Kernel D2H

H2D Kernel D2H

Stream 1:

Stream 2:

Scenario A: Kernel execution exceeds data transfer time, computation resources 
sufficient to execute kernels in parallel

Latency avoided

D2H



batchVectorAdd Device Execution Timeline

Without Explicit Streams:

H2D Kernel
Default 
Stream:

H2D Kernel D2H H2D Kernel D2H

With Explicit Streams:

H2D Kernel D2HStream 0:

H2D Kernel D2H

H2D Kernel D2H

Stream 1:

Stream 2:

Scenario B: Kernel execution exceeds data transfer time, computation resources 
insufficient to execute kernels in parallel

Latency avoided

D2H



batchVectorAdd Device Execution Timeline

Without Explicit Streams:

H2D Kernel D2H
Default 
Stream:

H2D Kernel D2H H2D Kernel D2H

With Explicit Streams:

H2D Kernel D2HStream 0:

H2D Kernel D2H

H2D Kernel D2H

Stream 1:

Stream 2:

Scenario C: Kernel execution and data transfer time are roughly equivalent

Latency avoided



batchVectorAdd Device Execution Timeline

Without Explicit Streams:

H2D Kernel D2H
Default 
Stream:

With Explicit Streams:

Stream 0:

Stream 1:

Stream 2:

Scenario D: Data transfer time exceeds kernel execution time

Latency avoided

H2D Kernel D2H H2D Kernel D2H

H2D Kernel D2H

H2D Kernel D2H

H2D Kernel D2H



What If There Is Only One Massive Vector?

For large, data-parallel kernels, streaming can be used to hide data transfer 
latency

Simply divide the input and output into chunks and do batch processing



Increased Concurrency with Streams

void massiveVectorAdd(float * A, float * B, float * C, int N) {

const int count = (N - 1) / CHUNK_SIZE + 1;

cudaStream_t * streams = new cudaStream_t[count];
float * d_A, * d_B, * d_C;

// make sure host pointers are in pinned memory, allocate device memory
...

for (int i = 0; i < count; ++i) {

const int start = i * CHUNK_SIZE;
const int end = min(N, (i+1) * CHUNK_SIZE);

// set up grid and block
...

cudaStreamCreate(&streams[i]);
cudaMemcpyAsync(d_A + start, A + start, (end-start) * sizeof(float), cudaMemcpyHostToDevice, streams[i]);
cudaMemcpyAsync(d_B + start, B + start, (end-start) * sizeof(float), cudaMemcpyHostToDevice, streams[i]);
vectorAddKernel<<<grid,block,0,streams[i]>>>(d_A + start, d_B + start, d_C + start, end-start);
cudaMemcpyAsync(C + start, d_C + start, (end-start) * sizeof(float), cudaMemcpyDeviceToHost, streams[i]);

}

for (int i = 0; i < count; ++i) {
cudaStreamSynchronize(streams[i]);
cudaStreamDestroy(streams[i]);

}

delete [] streams; 

}



Stream Scheduling in Fermi

All work was placed in a single queue

The CUDA runtime launched the next element in the queue when all its 
dependencies were complete

This introduced false dependencies

H2D Kernel D2HWork Queue H2D Kernel D2H H2D Kernel D2H

Execute Concurrently Execute Concurrently

False Dependencies!



Breadth-First Ordering

void massiveVectorAdd(float * A, float * B, float * C, int N) {

const int count = (N - 1) / CHUNK_SIZE + 1;

cudaStream_t * streams = new cudaStream_t[count];
float * d_A, * d_B, * d_C;

// make sure host pointers are in pinned memory, allocate device memory
...

for (int i = 0; i < count; ++i) cudaStreamCreate(&streams[i]);

#define start(i) i * CHUNK_SIZE
#define size(i) min(N, (i+1) * CHUNK_SIZE) - start(i)

for (int i = 0; i < count; ++i)
cudaMemcpyAsync(d_A + start(i), A + start(i), size(i) * sizeof(float), cudaMemcpyHostToDevice, streams[i]);

for (int i = 0; i < count; ++i)
cudaMemcpyAsync(d_B + start(i), B + start(i), size(i) * sizeof(float), cudaMemcpyHostToDevice, streams[i]);

for (int i = 0; i < count; ++i) {
// set up grid and block
...
vectorAddKernel<<<grid,block,0,streams[i]>>>(d_A + start(i), d_B + start(i), d_C + start(i), size(i));

}
for (int i = 0; i < count; ++i)

cudaMemcpyAsync(C + start(i), d_C + start(i), size(i) * sizeof(float), cudaMemcpyDeviceToHost, streams[i]);

for (int i = 0; i < count; ++i) {
cudaStreamSynchronize(streams[i]);
cudaStreamDestroy(streams[i]);

}

delete [] streams; 

}



Stream Scheduling in Fermi

Breadth-first ordering avoided false dependencies

H2D Kernel D2HWork Queue H2D Kernel D2HH2D Kernel D2H



Stream Scheduling in Kepler and Beyond

Kepler introduced “Hyper-Q”, which just means that there are 32 separate work 
queues

Each stream (up to 32) is mapped to a separate queue, eliminating false 
dependencies

The 33rd stream will have to share a work queue (may be false dependencies)

H2D Kernel D2HWork Queue 0

H2D Kernel D2H

H2D Kernel D2H

Work Queue 1

Work Queue 2

Work Queue 3

...



Stream Priority

Devices with compute capability >= 3.5 can assign priorities to kernel launches 
(but not to memory transfers or other API calls)

cudaStreamCreateWithPriority(&stream, cudaStreamDefault, priority);

Grids with a lower priority value are scheduled sooner

Minimum and maximum priority values can be determined using:

int leastPriority, greatestPriority;

cudaDeviceGetStreamPriority(&leastPriority, &greatestPriority);



Blocking Streams

Non-default streams are blocking streams by default

When an operation is issued to the default stream:

1. The CUDA context waits for all operations already issued to blocking 
streams to finish

2. The operation begins
3. Other operations issued in blocking streams in the meantime will wait 

until the operation in the default stream has finished



default

stream1

stream2

stream3

stream4

Blocking Streams

kernelA<<<gridA, blockA, 0, stream1>>>();

kernelB<<<gridB, blockB, 0, stream2>>>();

kernelC<<<gridC, blockC>>>();

kernelD<<<gridD, blockD, 0, stream3>>>();

kernelE<<<gridE, blockE, 0, stream4>>>();

kernelA

kernelB

kernelC

kernelD

kernelE

time



Non-blocking Streams

Non-default streams can also be non-blocking if such behaviour is explicitly 
requested as follows:

cudaStream_t nonBlockingStream;

cudaStreamCreateWithFlags(&nonBlockingStream, cudaStreamNonBlocking);

This can be very useful when using a library that issues operations in the default 
stream



Events

Events are markers that can be inserted into CUDA streams and used to 
determine if and when a particular checkpoint is reached

Events are created and destroyed much like streams:

cudaEvent_t event;

cudaEventCreate(&event);

// issue operations in stream

...

cudaEventRecord(event, stream);

...

cudaEventDestroy(event);

The host returns from this call 
immediately. However, the event is 
not marked as completed until the 
stream reaches the operation



Timing with Events

// create events
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);

// record start
cudaEventRecord(start);

kernel<<<grid,block>>>(...);

// record stop
cudaEventRecord(stop);

// wait for stop event to be recorded
cudaEventSynchronize(stop);

// compute elapsed time
float time;
cudaEventElapsedTime(&time, start, stop);

// destroy events
cudaEventDestroy(start);
cudaEventDestroy(stop);



Implicit Host-Device Synchronization

Implicit synchronizations are functions with a purpose other than 
synchronization, but which produce synchronization as a side effect

● Page-locked host memory allocations
● Device memory allocations
● Device memset
● Memory copies between addresses on the same device

One must be careful not to accidentally serialize otherwise parallelizable tasks



Increased Concurrency with Streams

void batchVectorAdd(float * * As, float * * Bs, float * * Cs, int * Ns, int count) {

cudaStream_t * streams = new cudaStream_t[count];
float * * d_As = new float *[count];
float * * d_Bs = new float *[count];
float * * d_Cs = new float *[count];

// make sure host pointers are in pinned memory
...

for (int i = 0; i < count; ++i) {

cudaMalloc(&d_As[i], Ns[i] * sizeof(float));
cudaMalloc(&d_Bs[i], Ns[i] * sizeof(float));
cudaMalloc(&d_Cs[i], Ns[i] * sizeof(float));

// set up grid and block
...

cudaStreamCreate(&streams[i]);
cudaMemcpyAsync(d_As[i], As[i], Ns[i] * sizeof(float), cudaMemcpyHostToDevice, streams[i]);
cudaMemcpyAsync(d_Bs[i], Bs[i], Ns[i] * sizeof(float), cudaMemcpyHostToDevice, streams[i]);
vectorAddKernel<<<grid,block,0,streams[i]>>>(d_As[i], d_Bs[i], d_Cs[i], Ns[i]);
cudaMemcpyAsync(Cs[i], d_Cs[i], Ns[i] * sizeof(float), cudaMemcpyDeviceToHost, streams[i]);

}

for (int i = 0; i < count; ++i) {
cudaStreamSynchronize(streams[i]);
cudaStreamDestroy(streams[i]);

}

delete [] streams; delete [] d_As; delete [] d_Bs; delete [] d_Cs;

}

Oops! These belong in a separate loop



NVVP Revisited

cudaMalloc in the loop:

Why is the host spending so much time in cudaMalloc??



NVVP Revisited

cudaMalloc in its own loop:

This is all of the cudaMalloc calls!



Explicit Host-Device Synchronization

Block a host thread until all device operations have completed:

cudaDeviceSynchronize();

Block a host thread until all operations in a stream have completed:

cudaStreamSynchronize(stream);

Check if there are pending operations in a stream:

bool operationsPending = cudaStreamQuery(stream) == cudaErrorNotReady;

Block a host thread until an event is recorded:

cudaEventSynchronize(event);

Check if an event has been recorded:

bool eventRecorded = cudaEventQuery(event) != cudaErrorNotReady;

Block a stream until an event is recorded:

cudaStreamWaitEvent(stream, event);



An Example Stream Dependency Graph

kernel1A kernel1B kernel1C kernel1D

kernel2A kernel2B kernel2C kernel2D

Without events:

kernel1A<<<..., stream1>>>(...);
kernel2A<<<..., stream2>>>(...);
kernel1B<<<..., stream1>>>(...);
kernel2B<<<..., stream2>>>(...);

// host must wait here to make sure kernel1B is done
cudaStreamSynchronize(stream1);

kernel1C<<<..., stream1>>>(...);
kernel1D<<<..., stream1>>>(...);
kernel2C<<<..., stream2>>>(...);
kernel2D<<<..., stream2>>>(...);



An Example Stream Dependency Graph

kernel1A kernel1B kernel1C kernel1D

kernel2A kernel2B kernel2C kernel2D

cudaEvent_t kernel1BFinished;
cudaEventCreate(&kernel1BFinished);

kernel1A<<<..., stream1>>>(...);
kernel2A<<<..., stream2>>>(...);
kernel1B<<<..., stream1>>>(...);
kernel2B<<<..., stream2>>>(...);
cudaEventRecord(kernel1BFinished, stream1);
cudaStreamWaitEvent(stream2, kernel1BFinished);
kernel1C<<<..., stream1>>>(...);
kernel2C<<<..., stream2>>>(...);
kernel1D<<<..., stream1>>>(...);
kernel2D<<<..., stream2>>>(...);

// the host is free to do other work after issuing all operations
...

stream1 stream2

kernel1A kernel2A

kernel1B kernel2B

cudaEventRecord cudaStreamWaitEvent

kernel1C kernel2C

kernel1D kernel2D



Stream Callbacks

A stream callback is a host function call which can be queued in a CUDA stream

Restrictions:
1. You cannot make CUDA API calls from a callback function
2. You cannot perform any synchronization in a callback function

void CUDART_CB printStreamNumber(cudaStream_t stream, cudaError_t status, void * data) {
printf(“stream %d complete\n”, *((int *)data));

}

int streamIds[nStreams];
for (int i = 0; i < nStreams; ++i) {

streamIds[i] = i;
kernelA<<<..., streams[i]>>>(...);
kernelB<<<..., streams[i]>>>(...);
cudaStreamAddCallback(streams[i], printStreamNumber, (void *)(&streamIds[i]), 0);

}



Conclusion / Takeaways

● Kernel launches and CUDA runtime API calls can be processed concurrently 
using explicitly managed streams

● Operations issued to the default stream are blocking with respect to all 
blocking streams

● Events allow the host to determine if and when a stream reaches a 
checkpoint, and can be used to synchronize multiple streams

● A number of CUDA runtime API calls implicitly synchronize device and host 
and should be placed where such synchronization will not block otherwise 
concurrent execution

● nVidia Visual Profiler is a very valuable development tool for applications 
with many kernels and host / device memory transfers



Sources

https://www.wikipedia.org/

Cheng, John, Max Grossman, and Ty McKercher. Professional Cuda C 
Programming. John Wiley & Sons, 2014.

Hwu, Wen-mei, and David Kirk. "Programming massively parallel processors." 
Special Edition 92 (2009).

Wilt, Nicholas. The cuda handbook: A comprehensive guide to gpu programming. 
Pearson Education, 2013.


