
CSE 599 I
Accelerated Computing -

Programming GPUS
Floating Point Considerations

Accelerated Computing

GPU Teaching Kit

Floating-Point Precision and Accuracy
Module 12.1 – Floating-Point Considerations

3

Objective
– To understand the fundamentals of floating-point representation
– To understand the IEEE-754 Floating Point Standard
– CUDA GPU Floating-point speed, accuracy and precision

– Cause of errors
– Algorithm considerations
– Deviations from IEEE-754
– Accuracy of device runtime functions
– Future performance considerations

4

What is IEEE floating-point format?
– An industry-wide standard for representing floating-point numbers to ensure

that hardware from different vendors generate results that are consistent with
each other

– A floating point binary number consists of three parts:
– sign (S), exponent (E), and mantissa (M)
– Each (S, E, M) pattern uniquely identifies a floating point number

– For each bit pattern, its IEEE floating-point value is derived as:
– value = (-1)S * 1.M * {2E-bias}

– The interpretation of S is simple: S=0 results in a positive number and S=1 a
negative number

S E M

5

Normalized Representation
– Using the definition 1.M as opposed to just M has two advantages

– One bit is saved, because the initial 1 is implied
– The remaining part of the mantissa is sometimes referred to as the fraction

– There is only one representation of (almost) every value
– For example, the only mantissa value allowed for 0.5D is M =1.0, with the

exponent set to -1, i.e. 0.5D = 1.0B * 2-1

– Without enforcing the leading one followed by a decimal point, we could have 0.5D
= 0.1B * 20 or 0.5D = 10.0B * 2-2

6

Exponent Representation
– In an n-bit exponent

representation, 2n-1-1 is
added to its 2's complement
representation to form its
excess representation.
– See Table for a 3-bit exponent

representation
– A simple unsigned integer

comparator can be used to
compare the magnitude of
two FP numbers

– Symmetric range for +/-
exponents (111 reserved)

2’s complement Actual decimal Excess-3

000 0 011

001 1 100

010 2 101

011 3 110

100 (reserved
pattern)

111

101 -3 000

110 -2 001

111 -1 010

7

A simple, hypothetical 5-bit FP format
2’s
complement

Actual decimal Excess-
1

00 0 01

01 1 10

10 (reserved
pattern)

11

11 -1 00

– Assume 1-bit S, 2-bit E,
and 2-bit M
– 0.5D = 1.00B * 2-1
– 0.5D = 0 00 00, where S = 0,

E = 00, and M = (1.)00

8

Representable Numbers
000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

– The representable numbers of
a given format is the set of all
numbers that can be exactly
represented in the format.

– See Table for representable
numbers of an unsigned 3-bit
integer format

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012 University of Illinois, Urbana-Champaign8

0 71 42 3 5 6-1 98

9

No-Zero
– The straightforward implementation

– However, zero is not a representable number in this format
– Not acceptable for most any application

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012
University of Illinois, Urbana-Champaign

9

1 2 3 40

10

Representable Numbers of a 5-bit Hypothetical IEEE Format

No-zero Abrupt underflow Gradual underflow

E M S=0 S=1
00 00 2-1 -(2-1)

01 2-1+1*2-3 -(2-1+1*2-3)
10 2-1+2*2-3 -(2-1+2*2-3)
11 2-1+3*2-3 -(2-1+3*2-3)

01 00 20 -(20)
01 20+1*2-2 -(20+1*2-2)
10 20+2*2-2 -(20+2*2-2)

11 20+3*2-2 -(20+3*2-2)

10 00 21 -(21)
01 21+1*2-1 -(21+1*2-1)
10 21+2*2-1 -(21+2*2-1)

11 21+3*2-1 -(21+3*2-1)

11 Reserved pattern

Cannot Represent Zero!

11

Flush to Zero
– Treat all bit patterns with E=0 as 0.0

– This takes away several representable numbers near zero and
lump them all into 0.0

– For a representation with large M, a large number of
representable numbers will be removed

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012
University of Illinois, Urbana-Champaign

11

1 2 3 40

12

Flush to Zero
No-zero Flush to Zero Denormalized

E M S=0 S=1 S=0 S=1
00 00 2-1 -(2-1) 0 0

01 2-1+1*2-3 -(2-1+1*2-3) 0 0
10 2-1+2*2-3 -(2-1+2*2-3) 0 0
11 2-1+3*2-3 -(2-1+3*2-3) 0 0

01 00 20 -(20) 20 -(20)
01 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2)
10 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2)
11 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2)

10 00 21 -(21) 21 -(21)
01 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1)
10 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1)
11 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1)

11 Reserved pattern

© David Kirk/NVIDIA and Wen-mei W.
Hwu, 2007-2012 University of Illinois,
Urbana-Champaign

12

13

Why is flushing to zero problematic?
– Many physical model calculations work on values that are

very close to zero
– Dark (but not totally black) sky in movie rendering
– Small distance fields in electrostatic potential calculation
– …

– Without Denormalization, these calculations tend to
create artifacts that compromise the integrity of the
models

14

Denormalized Numbers
– The actual method adopted by the IEEE standard

is called “denormalized numbers” or “gradual
underflow”.
– The method relaxes the normalization requirement for numbers very

close to 0.
– Whenever E=0, the mantissa is no longer assumed to be of the form

1.XX. Rather, it is assumed to be 0.XX. In general, if the n-bit exponent is
0, the value is 0.M * 2 - 2 ^(n-1) + 2

0 1 2 3

15

Denormalization
No-zero Flush to Zero Denormalized

E M S=0 S=1 S=0 S=1 S=0 S=1
00 00 2-1 -(2-1) 0 0 0 0

01 2-1+1*2-3 -(2-1+1*2-3) 0 0 1*2-2 -1*2-2

10 2-1+2*2-3 -(2-1+2*2-3) 0 0 2*2-2 -2*2-2

11 2-1+3*2-3 -(2-1+3*2-3) 0 0 3*2-2 -3*2-2

01 00 20 -(20) 20 -(20) 20 -(20)
01 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2)
10 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2)
11 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2)

10 00 21 -(21) 21 -(21) 21 -(21)
01 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1)
10 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1)
11 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1)

11 Reserved pattern

© David Kirk/NVIDIA and Wen-mei W.
Hwu, 2007-2012 University of Illinois,
Urbana-Champaign

15

16

IEEE 754 Format and Precision
– Single Precision

– 1-bit sign, 8 bit exponent (bias-127 excess), 23 bit fraction

– Double Precision
– 1-bit sign, 11-bit exponent (1023-bias excess), 52 bit fraction
– The largest error for representing a number is reduced to 1/229 of single

precision representation

– Half Precision
– 1-bit sign, 5 bit exponent (bias-15 excess), 10 bit fraction

S E M

S E M

S E M

17

Special Bit Patterns

– An ∞ can be created by overflow, e.g., divided by zero. Any
representable number divided by +∞ or -∞ results in 0.

– NaN (Not a Number) is generated by operations whose input values
do not make sense, for example, 0/0, 0*∞, ∞/∞, ∞ - ∞.

– Also used to for data that has not been properly initialized in a program.
– Signaling NaNs (SNaNs) are represented with most significant mantissa bit cleared whereas

quiet NaNs are represented with most significant mantissa bit set.

exponent mantissa meaning

11…1 ≠ 0 NaN

11…1 =0 (-1)S * ∞

00…0 ≠0 denormalized

00…0 =0 0

18

Floating Point Accuracy and Rounding
– The accuracy of a floating point arithmetic operation is measured by

the maximal error introduced by the operation.
– The most common source of error in floating point arithmetic is when

the operation generates a result that cannot be exactly represented
and thus requires rounding.

– Rounding occurs if the mantissa of the result value needs too many
bits to be represented exactly.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012
University of Illinois, Urbana-Champaign

18

19

Rounding and Error
– Assume our 5-bit representation, consider

1.0*2-2 (0, 00, 01) + 1.00*21 (0, 10, 00)

– The hardware needs to shift the mantissa bits in order to align the
correct bits with equal place value

0.001*21 (0, 00, 0001) + 1.00*21 (0, 10, 00)

The ideal result would be 1.001 * 21 (0, 10, 001) but this would
require 3 mantissa bits!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012
University of Illinois, Urbana-Champaign

19

denorm

20

Rounding and Error
– In some cases, the hardware may only perform the operation on a

limited number of bits for speed and area cost reasons
– An adder may only have 3 bit positions in our example so the first operand would be

treated as a 0.00

0.001*21 (0, 00, 0001) + 1.00*21 (0, 10, 00)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012
University of Illinois, Urbana-Champaign

20

21

Error Measure
– Floating-point operation errors are typically measured using “Units in

the Last Place” (ULP)
– This refers to the place value of the last bit in the mantissa
– Note that this metric is exponent-dependent

– The best any hardware can do is 0.5 ULP
– The error is limited by the precision for this case; even if the results were computed

to infinite precision, it must be rounded to fit into a fixed-sized representation

– The IEEE standard states that any compliant hardware should
compute operations such as multiplication and addition to 0.5 ULP

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012
University of Illinois, Urbana-Champaign

21

22

Order of Operations Matter
– Floating point operations are not strictly associative
– The root cause is that sometimes a very small number can disappear

when added to or subtracted from a very large number.
– (Large + Small) + Small ≠ Large + (Small + Small)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012
University of Illinois, Urbana-Champaign

22

23

Algorithm Considerations
– Sequential sum

 1.00*20 +1.00*20 + 1.00*2-2 + 1.00*2-2
 = 1.00*21 + 1.00*2-2 + 1.00*2-2

 = 1.00*21 + 1.00*2-2

 = 1.00*21

– Parallel reduction
(1.00*20 +1.00*20) + (1.00*2-2 + 1.00*2-2)

 = 1.00*21 + 1.00*2-1

 = 1.01*21

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012
University of Illinois, Urbana-Champaign

23

24

atomicAdd + Floating-Point = Stochastic!
– Order of operations matters, i.e. different orderings of additions can

yield different results
– When writing from multiple threads to the same memory location,

there is a race condition
– atomicAdd ensures that all values get added, but the ordering is still

random, based on which thread wins the race
– Therefore, the order of additions is random, which means the result

is random!

25

Make your program float-safe!
– Modern GPU hardware has double precision support

– Double precision will have additional performance cost
– Careless use of double or undeclared types may run more

slowly
– Important to be float-safe (be explicit whenever you want

single precision) to avoid using double precision where it
is not needed
– Add ‘f’ specifier on float literals:

– foo = bar * 0.123; // double assumed
– foo = bar * 0.123f; // float explicit

– Use float version of standard library functions
– foo = sin(bar); // double assumed
– foo = sinf(bar); // single precision explicit

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012
University of Illinois, Urbana-Champaign

25

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

27

Further Reading:
“What Every Computer Scientist Should Know About Floating-Point

Arithmetic” by David Goldberg:

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

