CSE 599 I Accelerated Computing -Programming GPUS

Floating Point Considerations

GPU Teaching Kit

Accelerated Computing

Module 12.1 – Floating-Point Considerations

Floating-Point Precision and Accuracy

Objective

- To understand the fundamentals of floating-point representation
- To understand the IEEE-754 Floating Point Standard
- CUDA GPU Floating-point speed, accuracy and precision
 - Cause of errors
 - Algorithm considerations
 - Deviations from IEEE-754
 - Accuracy of device runtime functions
 - Future performance considerations

What is IEEE floating-point format?

- An industry-wide standard for representing floating-point numbers to ensure that hardware from different vendors generate results that are consistent with each other
- A floating point binary number consists of three parts:
 - sign (S), exponent (E), and mantissa (M)
 - Each (S, E, M) pattern uniquely identifies a floating point number

- For each bit pattern, its IEEE floating-point value is derived as:
 - value = $(-1)^S * 1.M * {2^{E-bias}}$
- The interpretation of S is simple: S=0 results in a positive number and S=1 a negative number

Normalized Representation

- Using the definition 1.M as opposed to just M has two advantages
 - One bit is saved, because the initial 1 is implied
 - The remaining part of the mantissa is sometimes referred to as the fraction
 - There is only one representation of (almost) every value
 - For example, the only mantissa value allowed for 0.5_D is M =1.0, with the exponent set to -1, i.e. 0.5_D = 1.0_B * 2^{-1}
 - Without enforcing the leading one followed by a decimal point, we could have $0.5_D = 0.1_B * 2^0$ or $0.5_D = 10.0_B * 2^{-2}$

Exponent Representation

- In an n-bit exponent representation, 2ⁿ⁻¹-1 is added to its 2's complement representation to form its excess representation.
 - See Table for a 3-bit exponent representation
- A simple unsigned integer comparator can be used to compare the magnitude of two FP numbers
- Symmetric range for +/exponents (111 reserved)

2's complement	Actual decimal	Excess-3
000	0	011
001	1	100
010	2	101
011	3	110
100	(reserved pattern)	111
101	-3	000
110	-2	001
111	-1	010

A simple, hypothetical 5-bit FP format

- Assume 1-bit S, 2-bit E, and 2-bit M
 - $-0.5D = 1.00_{B} * 2-1$
 - 0.5D = 0.0000, where S = 0, E = 00, and M = (1.)00

2's complement	Actual decimal	Excess-
00	0	01
01	1	10
10	(reserved pattern)	11
11	-1	00

Representable Numbers

- The representable numbers of a given format is the set of all numbers that can be exactly represented in the format.
- See Table for representable numbers of an unsigned 3-bit integer format

000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

No-Zero

The straightforward implementation

- However, zero is not a representable number in this format
- Not acceptable for most any application

Representable Numbers of Cannot Represent Zero!

Format

		N	o-zero		Gradual	underflow
Е	M	S=0	S=1			
00	00	2-1	-(2-1)			
	01	2-1+1*2-3	-(2 ⁻¹ +1*2 ⁻³)			
	10	2-1+2*2-3	-(2 ⁻¹ +2*2 ⁻³)			
	11	2-1+3*2-3	-(2 ⁻¹ +3*2 ⁻³)			
01	00	20	-(2 ⁰)			
	01	20+1*2-2	-(2 ⁰ +1*2 ⁻²)			
	10	20+2*2-2	-(2 ⁰ +2*2 ⁻²)			
	11	20+3*2-2	-(2 ⁰ +3*2 ⁻²)			
10	00	21	-(2 ¹)			
	01	21+1*2-1	-(2 ¹ +1*2 ⁻¹)			
	10	21+2*2-1	-(2 ¹ +2*2 ⁻¹)			
	11	21+3*2-1	-(2 ¹ +3*2 ⁻¹)			
11	Reserved pattern					

Flush to Zero

Treat all bit patterns with E=0 as 0.0

- This takes away several representable numbers near zero and lump them all into 0.0
- For a representation with large M, a large number of representable numbers will be removed

Flush to Zero

			No-zero Flush to Zero Denorma		Denormalized	
Е	M	S=0	S=1	S=0	S=1	
00	00	2-1	-(2-1)	0	0	
	01	2-1+1*2-3	-(2 ⁻¹ +1*2 ⁻³)	0	0	
	10	2-1+2*2-3	-(2 ⁻¹ +2*2 ⁻³)	0	0	
	11	2-1+3*2-3	-(2 ⁻¹ +3*2 ⁻³)	0	0	
01	00	2^0	-(2 ⁰)	20	-(2 ⁰)	
	01	20+1*2-2	-(2 ⁰ +1*2 ⁻²)	20+1*2-2	-(2 ⁰ +1*2 ⁻²)	
	10	20+2*2-2	-(2 ⁰ +2*2 ⁻²)	20+2*2-2	-(2 ⁰ +2*2 ⁻²)	
	11	20+3*2-2	-(2 ⁰ +3*2 ⁻²)	20+3*2-2	-(2 ⁰ +3*2 ⁻²)	
10	00	21	-(2 ¹)	21	-(2 ¹)	
	01	21+1*2-1	-(2 ¹ +1*2 ⁻¹)	21+1*2-1	-(2 ¹ +1*2 ⁻¹)	
	10	21+2*2-1	-(2 ¹ +2*2 ⁻¹)	21+2*2-1	-(2 ¹ +2*2 ⁻¹)	
	11	21+3*2-1	-(2 ¹ +3*2 ⁻¹)	21+3*2-1	-(2 ¹ +3*2 ⁻¹)	
11	Reserved pattern					

Why is flushing to zero problematic?

- Many physical model calculations work on values that are very close to zero
 - Dark (but not totally black) sky in movie rendering
 - Small distance fields in electrostatic potential calculation
 - ...
- Without Denormalization, these calculations tend to create artifacts that compromise the integrity of the models

Denormalized Numbers

- The actual method adopted by the IEEE standard is called "denormalized numbers" or "gradual underflow".
 - The method relaxes the normalization requirement for numbers very close to 0.
 - Whenever E=0, the mantissa is no longer assumed to be of the form
 1.XX. Rather, it is assumed to be 0.XX. In general, if the n-bit exponent is
 0, the value is 0.M * 2 2 ^(n-1) + 2



Denormalization

			No-zero	Flush to Zero		Deno	Denormalized	
Е	M	S=0	S=1	S=0	S=1	S=0	S=1	
00	00	2-1	-(2-1)	0	0	0	0	
	01	2-1+1*2-3	-(2 ⁻¹ +1*2 ⁻³)	0	0	1*2-2	-1*2-2	
	10	2-1+2*2-3	-(2 ⁻¹ +2*2 ⁻³)	0	0	2*2-2	-2*2-2	
	11	2-1+3*2-3	-(2 ⁻¹ +3*2 ⁻³)	0	0	3*2-2	-3*2-2	
01	00	20	-(2 ⁰)	20	- (2 ⁰)	2^0	-(20)	
	01	20+1*2-2	-(2 ⁰ +1*2 ⁻²)	20+1*2-2	-(2 ⁰ +1*2 ⁻²)	20+1*2-2	-(2 ⁰ +1*2 ⁻²)	
	10	20+2*2-2	-(2 ⁰ +2*2 ⁻²)	20+2*2-2	-(2 ⁰ +2*2 ⁻²)	20+2*2-2	-(2 ⁰ +2*2 ⁻²)	
	11	20+3*2-2	-(2 ⁰ +3*2 ⁻²)	20+3*2-2	-(2 ⁰ +3*2 ⁻²)	20+3*2-2	-(2 ⁰ +3*2 ⁻²)	
10	00	21	-(2 ¹)	21	- (2 ¹)	21	-(2 ¹)	
	01	21+1*2-1	-(2 ¹ +1*2 ⁻¹)	21+1*2-1	-(2 ¹ +1*2 ⁻¹)	21+1*2-1	-(2 ¹ +1*2 ⁻¹)	
	10	21+2*2-1	-(2 ¹ +2*2 ⁻¹)	21+2*2-1	-(2 ¹ +2*2 ⁻¹)	21+2*2-1	-(2 ¹ +2*2 ⁻¹)	
	11	21+3*2-1	-(2 ¹ +3*2 ⁻¹)	21+3*2-1	-(2 ¹ +3*2 ⁻¹)	21+3*2-1	-(2 ¹ +3*2 ⁻¹)	
11	Reserved pattern							

IEEE 754 Format and Precision

Single Precision

1-bit sign, 8 bit exponent (bias-127 excess), 23 bit fraction

Double Precision

- 1-bit sign, 11-bit exponent (1023-bias excess), 52 bit fraction
- The largest error for representing a number is reduced to 1/229 of single precision representation

Half Precision

1-bit sign, 5 bit exponent (bias-15 excess), 10 bit fraction

Special Bit Patterns

exponent	mantissa	meaning
111	≠ 0	NaN
111	=0	(-1) ^S * ∞
000	≠0	denormalized
000	=0	0

- An ∞ can be created by overflow, e.g., divided by zero. Any representable number divided by +∞ or -∞ results in 0.
- NaN (Not a Number) is generated by operations whose input values do not make sense, for example, 0/0, 0*∞, ∞/∞, ∞ ∞.
 - Also used to for data that has not been properly initialized in a program.
 - Signaling NaNs (SNaNs) are represented with most significant mantissa bit cleared whereas
 quiet NaNs are represented with most significant mantissa bit set.

Floating Point Accuracy and Rounding

- The accuracy of a floating point arithmetic operation is measured by the maximal error introduced by the operation.
- The most common source of error in floating point arithmetic is when the operation generates a result that cannot be exactly represented and thus requires rounding.
- Rounding occurs if the mantissa of the result value needs too many bits to be represented exactly.

Rounding and Error

Assume our 5-bit representation, consider

 The hardware needs to shift the mantissa bits in order to align the correct bits with equal place value

$$0.001*2^{1}(0, 00, 0001) + 1.00*2^{1}(0, 10, 00)$$

The ideal result would be 1.001 * 2¹ (0, 10, 001) but this would require 3 mantissa bits!

Rounding and Error

- In some cases, the hardware may only perform the operation on a limited number of bits for speed and area cost reasons
 - An adder may only have 3 bit positions in our example so the first operand would be treated as a 0.00

 $0.001*2^{1}(0, 00, 0001) + 1.00*2^{1}(0, 10, 00)$

Error Measure

- Floating-point operation errors are typically measured using "Units in the Last Place" (ULP)
 - This refers to the place value of the last bit in the mantissa
 - Note that this metric is exponent-dependent
- The best any hardware can do is 0.5 ULP
 - The error is limited by the precision for this case; even if the results were computed to infinite precision, it must be rounded to fit into a fixed-sized representation
- The IEEE standard states that any compliant hardware should compute operations such as multiplication and addition to 0.5 ULP

Order of Operations Matter

- Floating point operations are not strictly associative
- The root cause is that sometimes a very small number can disappear when added to or subtracted from a very large number.
 - (Large + Small) + Small ≠ Large + (Small + Small)

Algorithm Considerations

Sequential sum

```
1.00*2^{0} + 1.00*2^{0} + 1.00*2^{-2} + 1.00*2^{-2}
= 1.00*2^{1} + 1.00*2^{-2} + 1.00*2^{-2}
= 1.00*2^{1} + 1.00*2^{-2}
= 1.00*2^{1}
```

Parallel reduction

$$(1.00*2^{0} + 1.00*2^{0}) + (1.00*2^{-2} + 1.00*2^{-2})$$

= $1.00*2^{1} + 1.00*2^{-1}$
= $1.01*2^{1}$

atomicAdd + Floating-Point = Stochastic!

- Order of operations matters, i.e. different orderings of additions can yield different results
- When writing from multiple threads to the same memory location, there is a race condition
- atomicAdd ensures that all values get added, but the ordering is still random, based on which thread wins the race
- Therefore, the order of additions is random, which means the result is random!

Make your program float-safe!

- Modern GPU hardware has double precision support
 - Double precision will have additional performance cost
 - Careless use of double or undeclared types may run more slowly
- Important to be float-safe (be explicit whenever you want single precision) to avoid using double precision where it is not needed
 - Add 'f' specifier on float literals:

```
- foo = bar * 0.123;  // double assumed
- foo = bar * 0.123f;  // float explicit
```

Use float version of standard library functions

```
- foo = sin(bar); // double assumed
- foo = sinf(bar); // single precision explicit
```


GPU Teaching Kit

Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the Creative Commons Attribution-NonCommercial 4.0 International License.

Further Reading:

"What Every Computer Scientist Should Know About Floating-Point Arithmetic" by David Goldberg:

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

