CSE 599 |
Accelerated Computing -
Programming GPUS

GPU Teaching Kit

Accelerated Computing

Module 12.1 — Floating-Point Considerations

Floating-Point Precision and Accuracy

Objective

— To understand the fundamentals of floating-point representation
— To understand the IEEE-754 Floating Point Standard
— CUDA GPU Floating-point speed, accuracy and precision

— Cause of errors

— Algorithm considerations

— Deviations from IEEE-754

— Accuracy of device runtime functions
— Future performance considerations

SAnvioia [@ioos

What is IEEE floating-point format?

An industry-wide standard for representing floating-point numbers to ensure
that hardware from different vendors generate results that are consistent with
each other

A floating point binary number consists of three parts:
— sign (S), exponent (E), and mantissa (M)
— Each (S, E, M) pattern uniquely identifies a floating point number

[S I E I M]
For each bit pattern, its IEEE floating-point value is derived as:
— value = (-1)S * 1.M * {2FPiasy

The interpretation of S is simple: S=0 results in a positive number and S=1 a
negative number

Normalized Representation

— Using the definition 1.M as opposed to just M has two advantages
— One bit is saved, because the initial 1 is implied
— The remaining part of the mantissa is sometimes referred to as the fraction
— There is only one representation of (almost) every value

— For example, the onIy mantissa value allowed for 0.5, is M =1.0, with the
exponent setto -1, i.e. 0.5, = 1.0, * 2"

— Without enforcing the Ieadlng one foIIowed by a decimal point, we could have 0.5,
=0.15 *2°or05 =10.05 * 22

SAnvioia [@ioos

Exponent Representation

: 2’s complement | Actual decimal Excess-3
— In an n-bit exponent
representation, 2"'-1 is 000 0 011
added to its 2's complement
. . 001 1 100
representation to form its
excess representation. 010 2 101
— See Table for a 3-bit exponent
representation Ol 3 10
— A simple unsigned integer 100 (reserved 111
comparator can be used to pattern)
compare the magnitude of | 101 3 000
two FP ngmbers 7o 5 o1
— Symmetric range for +/-
exponents (111 reserved) ti -1 010

A simple, hypothetical 5-bit FP format

2’s Actual decimal Excess-
. . complement 1
— Assume 1-bit S, 2-bit E, 00 0 01
and 2-bit M
— 0.5D =1.00, * 2-1 o ! o
— 05D=000 00, where S = O, 10 (reserved 11
E =00,and M = (1.)00 pattern)
11 -1 00

Snvioia [@imos

Representable Numbers

000 0
— The representable numbers of

a given format is the set of all 001 1
numbers that can be exactly
represented in the format.

— See Table for representable 011 3
numbers of an unsigned 3-bit

010 2

. 100 4
integer format

101 5

110 6

SRS an s 111 7

-10 1 234567289

e B anvia [[o

No-Zero

— The straightforward implementation

— However, zero is not a representable number in this format
— Not acceptable for most any application

E— T T A TR

Representable Numbers of

Cannot Represent Zero!

Format

No-zero Gradual underflow

E M S= S=1
00 00 21 -2

01 | 27141%273 -(27141%273)

10 | 27142%273 -(27142%23)

1| 27143%273 -(27143%273)
01 00 |20 -2%

01 | 2041%22 -(2°+1%22)

10 [20+2%272 -(2°+2%2?)

I | 2943%272 -(2°+3%22)
10 00 21 -2Y)

01 | 21+1%2" -2+1%27)

10| 2142%271 -2'+2%27)

1| 2143%2-1 -(21+3%2)
11 Reserved pattern

SAnviDia

Flush to Zero
— Treat all bit patterns with E=0 as 0.0

— This takes away several representable numbers near zero and
lump them all into 0.0

— For a representation with large M, a large number of
representable numbers will be removed

Snvioia [@ios

Flush to Zero

No-zero Flush to Zero Denormalized
E M $=0 S=1 S=0 S=1
00 00 |2 -2 0 0
01 2714+1%27 -(27141%273) 0 0
10 | 2742%27 -(214+2%27) 0 0
11| 2743%27 -(274+3%27%) 0 0
01 00 |2° -(2%) 20 2%
01 20+1%27 -(2+1%27?) 20.41%9-2 -(2°+1%22)
10 2042272 -(20+2%2°2) 20.49%9-2 _(20+2*2-2)
11| 2%43%272 -(2°+3*2?) 2043%22 | ((2043%22)
10 00 |2 -(2Y 21 -2
01 241%27! -(2'+1*271) 2141%9-1 -2'+1%21
10 2142271 -(21+2%2°h 2149%9-1 _(21+2*2-1)
11| 24+3%27! -(24+3%21) 2143%21 | (2143%271)
11 Reserved pattern

SAnvioia [@ioos

Why is flushing to zero problematic?

— Many physical model calculations work on values that are

very close to zero

— Dark (but not totally black) sky in movie rendering
— Small distance fields in electrostatic potential calculation

— Without Denormalization, these calculations tend to
create artifacts that compromise the integrity of the
models

Snvioia [@ios

Denormalized Numbers

— The actual method adopted by the IEEE standard
IS called “denormalized numbers” or “gradual
underflow”.

— The method relaxes the normalization requirement for numbers very
close to 0.

— Whenever E=0, the mantissa is no longer assumed to be of the form
1.XX. Rather, it is assumed to be 0.XX. In general, if the n-bit exponent is
0, the value isO.M*2 -2 *n-1) + 2

Denormalization

No-zero Flush to Zero Denormalized
E M S=0 S=1 S=0 S=1 S=0 S=1
00 00 2! -2 0 0 0 0
01 [27+1%*27 -(21+1%27) 0 0 1%2-2 -1%22
10 | 2'+2%27 -(242%27) 0 0 %72 %92
11 27143%23 -(27143%279) 0 0 392 -3%22
01 00 20 -(2° 20 (2% 20 (29
01 2041%22 -(2%41%27) 20+1%22 -(2%+1%27%) 2041%9-2 -(20+1%2°2)
10 2042%)2 -(2042%22) 2042%22 -(2%42%22) 204 9%9-2 _(20+2* 2-2)
11 20+3%272 -(20+3%272) 2043272 -(2943%22) 2043%9-2 _(2O+3 * 2—2)
0 | o0 |2 2" 2! 2" 2! -(2")
01 214127 -2M41%27) 20127 -2M+1%27 PIERE LR -(2141%27
10 2142%)°1 -(2142%27h 2142%)°! -21+2%27h 2149%9-1 _(21+2* 2-1)
11 2143%271 -(21+3%2°1) 2143%2°1 -(2143%2°1) 2143%9-1 _(21+3 *2—1)
11 Reserved pattern

IEEE 754 Format and Precision

— Single Precision
— 1-bit sign, 8 bit exponent (bias-127 excess), 23 bit fraction

S E M
I I)

— Double Precision

— 1-bit sign, 11-bit exponent (1023-bias excess), 52 bit fraction

— The largest error for representing a number is reduced to 1/229 of single
precision representation

S E M

I)
— Half Precision

— 1-bit sign, 5 bit exponent (bias-15 excess), 10 bit fraction

Special Bit Patterns

= 0 NaN

=0 (-1)S * oo

=0 denormalized
=0 0

— An « can be created by overflow, e.g., divided by zero. Any
representable number divided by +« or -« results in O.

— NaN (Not a Number) is generated by operations whose input values
do not make sense, for example, 0/0, 0%, /0 o0 - oo
— Also used to for data that has not been properly initialized in a program.

— Signaling NaNs (SNaNs) are represented with most significant mantissa bit cleared whereas
quiet NaNs are represented with most significant mantissa bit set.

SAnvIDIA M [LLINOIS

Floating Point Accuracy and Rounding

— The accuracy of a floating point arithmetic operation is measured by
the maximal error introduced by the operation.

— The most common source of error in floating point arithmetic is when
the operation generates a result that cannot be exactly represented
and thus requires rounding.

— Rounding occurs if the mantissa of the result value needs too many
bits to be represented exactly.

Snvioia [|

Rounding and Error

— Assume our 5-bit representation, consider

1.0*22 (0, 00, 01) + 1.00%2" (0, 10, 00)
denorm

— The hardware needs to shift the mantissa bits in order to align the
correct bits with equal place value

0.001*2" (0, 00, 0001) + 1.00*2" (0, 10, 00)

The ideal result would be 1.001 * 2" (0, 10, 001) but this would
require 3 mantissa bits!

Snvioia [|

Rounding and Error

— In some cases, the hardware may only perform the operation on a
limited number of bits for speed and area cost reasons

— An adder may only have 3 bit positions in our example so the first operand would be
treated as a 0.00

0.001*2' (0, 00, 0001) + 1.00*2" (0, 10, 00)

SAnvioia [@ioos

Error Measure

Floating-point operation errors are typically measured using “Units in
the Last Place” (ULP)

— This refers to the place value of the last bit in the mantissa
— Note that this metric is exponent-dependent

The best any hardware can do is 0.5 ULP

— The error is limited by the precision for this case; even if the results were computed
to infinite precision, it must be rounded to fit into a fixed-sized representation

The IEEE standard states that any compliant hardware should
compute operations such as multiplication and addition to 0.5 ULP

SAnvioia [@ioos

Order of Operations Matter

— Floating point operations are not strictly associative

— The root cause is that sometimes a very small number can disappear
when added to or subtracted from a very large number.
— (Large + Small) + Small # Large + (Small + Small)

Algorithm Considerations

— Sequential sum
1.00*2° +1.00%2° + 1.00*22 + 1.00*22
=1.00%2" + 1.00*22 + 1.00*22
=1.00*2" + 1.00*22
=1.00*2’

— Parallel reduction
(1.00*2° +1.00*2°%) + (1.00*2% + 1.00*22)
=1.00*2" + 1.00*2"
=1.01*2]

atomicAdd + Floating-Point = Stochastic!

Order of operations matters, i.e. different orderings of additions can
yield different results

When writing from multiple threads to the same memory location,
there is a race condition

atomicAdd ensures that all values get added, but the ordering is still
random, based on which thread wins the race

Therefore, the order of additions is random, which means the result
IS random!

Make your program float-safe!

— Modern GPU hardware has double precision support
— Double precision will have additional performance cost
— Careless use of double or undeclared types may run more
slowly
— Important to be float-safe (be explicit whenever you want
single precision) to avoid using double precision where it
IS not needed
— Add ‘f’ specifier on float literals:
— foo = bar * 0.123; // double assumed
— foo = bar * 0.123f; // float explicit

— Use float version of standard library functions
— foo = sin (bar); // double assumed
— foo = sinf(bar); // single precision explicit

GPU Teaching Kit

Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA and the University of lllinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

Further Reading:

“What Every Computer Scientist Should Know About Floating-Point
Arithmetic” by David Goldberg:

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

