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Objective
– To Understand the OpenCL programming model

– basic concepts and data types
– Kernel structure
– Application programming interface 
– Simple examples
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Background
– OpenCL was initiated by Apple and maintained by the Khronos 

Group (also  home of OpenGL) as an industry standard API
– For cross-platform parallel programming in CPUs, GPUs, DSPs, FPGAs,…

– OpenCL draws heavily on CUDA
– Easy to learn for CUDA programmers

– OpenCL  host code is much more complex and tedious due to 
desire to maximize portability and to minimize burden on vendors



5 

OpenCL Programs
– An OpenCL “program” is a C program that contains one or more 

“kernels” and any supporting routines that run on a target device
– An OpenCL kernel is the basic unit of parallel code that can be 

executed on a target device

Kernel A

Kernel B

Kernel C

Misc support
   functions

OpenCL Program
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OpenCL Execution Model
– Integrated host+device app C program

– Serial or modestly parallel parts in host C code
– Highly parallel parts in device SPMD kernel C code

. . .

. . .
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OpenCL Parallelism 
Concept

CUDA Equivalent

host host
device device
kernel kernel
host program host program
NDRange (index space) grid
work item thread
work group block

Mapping between OpenCL and CUDA data 
parallelism model concepts.
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OpenCL Kernels
– Code that executes on target devices
– Kernel body is instantiated once for each work item

– An OpenCL work item is equivalent to a CUDA thread

– Each OpenCL work item gets a unique index

__kernel void  vadd(__global const float *a,
    __global const float *b,
                      __global float *result) 
{
    int id = get_global_id(0);
    result[id] = a[id] + b[id];
}
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Array of Work Items
– An OpenCL kernel is executed by an array of work items

– All work items run the same code (SPMD)
– Each work item can call get_global_id() to get its index for computing memory 

addresses and make control decisions

…
int id = get_global_id(0);
result[id] = a[id] + b [id];
…

work items

work group 0

…
…
int id = get_global_id(0);
result[id] = a[id] + b [id];
…

work group 1

…
int id = get_global_id(0);
result[id] = a[id] + b [id];
…

work group 7
76543210 15141312111098

6362616059585756

56 57 58 59 60 61 62 63
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Work Groups: Scalable Cooperation
– Divide monolithic work item array into work groups

– Work items within a work group cooperate via shared memory and barrier 
synchronization

– Work items in different work groups cannot cooperate

– OpenCL counterpart of CUDA Thread Blocks
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OpenCL API Call Explanation CUDA Equivalent
get_global_id(0); global index of the 

work item in the x 
dimension

blockIdx.x*blockDim.x
+threadIdx.x

get_local_id(0) local index of the 
work item within the 
work group in the x 
dimension

threadIdx.x

get_global_size(0); size of NDRange in 
the x dimension

gridDim.x*blockDim.x

get_local_size(0); Size of each work 
group in the x 
dimension

blockDim.x

OpenCL Dimensions and Indices
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Multidimensional Work Indexing
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OpenCL Data Parallel Model Summary
– Parallel work is submitted to devices by launching 

kernels
– Kernels run over global dimension index ranges 

(NDRange), broken up into “work groups”, and “work 
items”

– Work items executing within the same work group can 
synchronize with each other with barriers or memory 
fences

– Work items in different work groups can’t sync with each 
other, except by terminating the kernel



Accelerated Computing

GPU Teaching Kit

Lecture 20.2 - OpenCL Device Architecture
Module 20 – Related Programming Models: OpenCL



15 

Objective
– To Understand the OpenCL device architecture

– Foundation to terminology used in the host code
– Also needed to understand the memory model for kernels



16 

OpenCL Hardware Abstraction
– OpenCL exposes CPUs, GPUs, and other Accelerators 

as “devices”
– Each device contains one or more “compute units”, i.e. 

cores, Streaming Multiprocessors, etc...
– Each compute unit contains one or more SIMD 

“processing elements”, (i.e. SP in CUDA) 

OpenCL Device
Compute Unit
PEPEPEPE

PEPEPEPE

Compute Unit

PEPEPEPE

PEPEPEPE
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OpenCL Device Architecture
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Memory Type Host access Device access CUDA Equivalent
global memory Dynamic 

allocation;
Read/write 
access

No allocation; 
Read/write access by 
all work items in all 
work groups, large 
and slow but may be 
cached in some 
devices.

global memory

constant memory Dynamic 
allocation; 
read/write 
access

Static allocation; 
read-only access by 
all work items.

constant memory

local memory Dynamic 
allocation; no 
access

Static allocation; 
shared read-write 
access by all work 
items in a work 
group. 

shared memory

private memory No allocation; no 
access

Static allocation; 
Read/write access 
by a single work 
item. 

registers and local 
memory

OpenCL Device Memory Types
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OpenCL Context
– Contains one or more devices
– OpenCL device memory objects are associated with a context, not a 

specific device

OpenCL Device

OpenCL Device

OpenCL Context
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Objective
– To learn to write OpenCL host code

– Create OpenCL context
– Create work queues for task parallelism
– Device memory Allocation
– Kernel compilation
– Kernel launch
– Host-device data copy
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OpenCL Context
– Contains one or more devices
– OpenCL memory objects are associated with a context, not a 

specific device
– clCreateBuffer() is the main data object allocation function

– error if an allocation is too large for any device in the context
– Each device needs its own work queue(s)
– Memory copy transfers are associated with a command queue (thus 

a specific device)
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OpenCL Context Setup Code (simple)
cl_int clerr = CL_SUCCESS;

cl_context clctx = clCreateContextFromType(0, CL_DEVICE_TYPE_ALL, 
NULL, NULL, &clerr);

size_t parmsz;
clerr = clGetContextInfo(clctx, CL_CONTEXT_DEVICES, 0, NULL, &parmsz); 

cl_device_id* cldevs = (cl_device_id *) malloc(parmsz); 
clerr = clGetContextInfo(clctx, CL_CONTEXT_DEVICES, parmsz, cldevs, 
NULL); 

cl_command_queue clcmdq = clCreateCommandQueue(clctx, cldevs[0], 0, 
&clerr); 



24 

OpenCL Kernel Compilation: vadd
const char* vaddsrc = 
   “__kernel void vadd(__global float *d_A, __global float *d_B, 
__global float *d_C, int N) { \n“   […etc and so forth…]

cl_program clpgm;
clpgm = clCreateProgramWithSource(clctx, 1, &vaddsrc, NULL, 
&clerr);

char clcompileflags[4096]; 
sprintf(clcompileflags, “-cl-mad-enable");
clerr = clBuildProgram(clpgm, 0, NULL, clcompileflags, NULL, NULL);
cl_kernel clkern = clCreateKernel(clpgm, “vadd", &clerr); 

OpenCL kernel source code as a big string

Gives raw source code string(s) to OpenCL

Set compiler flags, compile source, and 
retrieve a handle to the “vadd” kernel
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OpenCL Device Memory Allocation
– clCreateBuffer(); 

– Allocates object in the device Global Memory
– Returns a pointer to the object
– Requires five parameters

– OpenCL context pointer
– Flags for access type by device (read/write, etc.)
– Size of allocated object
– Host memory pointer, if used in copy-from-host mode
– Error code

– clReleaseMemObject()
– Frees object 

– Pointer to freed object
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OpenCL Device Memory Allocation (cont.)

– Code example: 
– Allocate a  1024 single precision float array
– Attach the allocated storage to d_a
– “d_” is often used to indicate a device data structure

VECTOR_SIZE = 1024;
cl_mem d_a;
int size = VECTOR_SIZE* sizeof(float);

d_a = clCreateBuffer(clctx, 
CL_MEM_READ_ONLY, size, NULL, NULL);

…

clReleaseMemObject(d_a);
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OpenCL Device Command Execution

OpenCL Device

Cmd QueueCommandApplication

Cmd Queue
Command

OpenCL Device

OpenCL Context
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OpenCL Host-to-Device Data Transfer
– clEnqueueWriteBuffer();

– Memory data transfer to device
– Requires nine parameters

– OpenCL command queue pointer
– Destination OpenCL memory buffer
– Blocking flag
– Offset in bytes
– Size (in bytes) of written data 
– Source host memory pointer
– List of events to be completed before execution of  this command
– Event object tied to this command
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OpenCL Device-to-Host Data Transfer
– clEnqueueReadBuffer();

– Memory data transfer to host
– requires nine parameters

– OpenCL command queue pointer
– Source OpenCL memory buffer
– Blocking flag
– Offset in bytes
– Size of bytes of read data 
– Destination host memory pointer
– List of events to be completed before execution of  this command
– Event object tied to this command
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OpenCL Host-Device Data Transfer (cont.)
– Code example: 

– Transfer a  64 * 64 single precision float array
– a is in host memory and d_a is in device memory

clEnqueueWriteBuffer(clcmdq, d_a, CL_FALSE, 0, 
mem_size, (const void * )a, 0, 0, NULL);

clEnqueueReadBuffer(clcmdq, d_result, CL_FALSE, 
0, 
mem_size, (void * ) host_result, 0, 0, 

NULL);
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OpenCL Host-Device Data Transfer (cont.)
– clCreateBuffer and clEnqueueWriteBuffer can be 

combined into a single command using special flags.
– Eg:   

d_A=clCreateBuffer(clctxt,CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 
mem_size, h_A, NULL);

– Combination of  2 flags here.  CL_MEM_COPY_HOST_PTR to be used 
only if a valid host pointer is specified.

– This creates a memory buffer on the device, and copies data from 
h_A into d_A. 

– Includes an implicit clEnqueueWriteBuffer operation, for all 
devices/command queues tied to the context clctxt.
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Device Memory Allocation and Data Transfer for 
vadd
float *h_A = …,   *h_B = …;
    // allocate device (GPU) memory
   cl_mem d_A, d_B, d_C;
   d_A = clCreateBuffer(clctx, CL_MEM_READ_ONLY | 
          CL_MEM_COPY_HOST_PTR, N *sizeof(float), h_A, NULL);
   d_B = clCreateBuffer(clctx, CL_MEM_READ_ONLY | 
          CL_MEM_COPY_HOST_PTR, N *sizeof(float), h_B, NULL);
   d_C = clCreateBuffer(clctx, CL_MEM_WRITE_ONLY, 

N *sizeof(float), NULL, NULL);        
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Device Kernel Configuration Setting for vadd
   clkern=clCreateKernel(clpgm, “vadd", NULL); 
   …
   clerr= clSetKernelArg(clkern, 0, sizeof(cl_mem),(void *)&d_A);
   clerr= clSetKernelArg(clkern, 1, sizeof(cl_mem),(void *)&d_B);
   clerr= clSetKernelArg(clkern, 2, sizeof(cl_mem),(void *)&d_C);
   clerr= clSetKernelArg(clkern, 3, sizeof(int), &N);



34 

Device Kernel Launch and Remaining Code for vadd

cl_event event=NULL; 
clerr= clEnqueueNDRangeKernel(clcmdq, clkern, 2, NULL, 

Gsz, Bsz, 0, NULL, &event);
clerr= clWaitForEvents(1, &event);
clEnqueueReadBuffer(clcmdq, d_C, CL_TRUE, 0, 

N*sizeof(float), h_C, 0, NULL, NULL);
clReleaseMemObject(d_A);
clReleaseMemObject(d_B);
clReleaseMemObject(d_C);
}
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Objective
– To understand the OpenACC programming model

– basic concepts and pragma types
– simple examples

2
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OpenACC
– The OpenACC Application Programming Interface provides a set of

– compiler directives (pragmas)
– library routines and 
– environment variables 
that can be used to write data parallel Fortran, C and C++ programs 
that run on accelerator devices including GPUs and CPUs

3
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OpenACC Pragmas
– In C and C++, the #pragma directive is the method to provide to the 

compiler information that is not specified in the standard language.
– These pragmas extend the  base language

4
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Vector Addition in OpenACC

void VecAdd(float * __restrict__ output, const float * input1, const float * input 2, int inputLength)
{
 #pragma acc parallel loop copyin(input1[0:inputLength],input2[0:inputLength]),  
copyout(output[0:inputLength])
    for(i = 0; i < inputLength; ++i) {
        output[i] = input1[i] + input2[i];
    }
}

5
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Simple Matrix-Matrix Multiplication in OpenACC

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3.  #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw]) 
4.  for (int i=0; i<Mh; i++) {
5.    #pragma acc loop 
6.      for (int j=0; j<Nw; j++) {
7.          float sum = 0;
8.          for (int k=0; k<Mw; k++) {
9.               float a = M[i*Mw+k];
10.               float b = N[k*Nw+j];
11.               sum += a*b;
12.          }
13.          P[i*Nw+j] = sum;
14.      }  
15.  } 
16. }

5
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Some Observations (1)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3.  #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw]) 
4.  for (int i=0; i<Mh; i++) {
5.    #pragma acc loop 
6.      for (int j=0; j<Nw; j++) {
7.          float sum = 0;
8.          for (int k=0; k<Mw; k++) {
9.               float a = M[i*Mw+k];
10.               float b = N[k*Nw+j];
11.               sum += a*b;
12.          }
13.          P[i*Nw+j] = sum;
14.      }  
15.  } 
16. }

5The code is almost identical to the sequential version,
except for the two lines with #pragma at line 3 and line 5. 
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Some Observations (2)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3.  #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw]) 
4.  for (int i=0; i<Mh; i++) {
5.    #pragma acc loop 
6.      for (int j=0; j<Nw; j++) {
7.          float sum = 0;
8.          for (int k=0; k<Mw; k++) {
9.               float a = M[i*Mw+k];
10.               float b = N[k*Nw+j];
11.               sum += a*b;
12.          }
13.          P[i*Nw+j] = sum;
14.      }  
15.  } 
16. }

5
The #pragma at line 3 tells the compiler to generate code for the ‘i’ 
loop at line 4 through 15 so that the loop iterations are executed at 
the first level of parallelism on the accelerator. 
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Some Observations (3)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3.  #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw]) 
4.  for (int i=0; i<Mh; i++) {
5.    #pragma acc loop 
6.      for (int j=0; j<Nw; j++) {
7.          float sum = 0;
8.          for (int k=0; k<Mw; k++) {
9.               float a = M[i*Mw+k];
10.               float b = N[k*Nw+j];
11.               sum += a*b;
12.          }
13.          P[i*Nw+j] = sum;
14.      }  
15.  } 
16. }

5
The copyin() clause and the copyout() clause specify how the 
compiler should arrange for the matrix data to be transferred 
between the host and the accelerator. 
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Some Observations (4)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3.  #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw]) 
4.  for (int i=0; i<Mh; i++) {
5.    #pragma acc loop 
6.      for (int j=0; j<Nw; j++) {
7.          float sum = 0;
8.          for (int k=0; k<Mw; k++) {
9.               float a = M[i*Mw+k];
10.               float b = N[k*Nw+j];
11.               sum += a*b;
12.          }
13.          P[i*Nw+j] = sum;
14.      }  
15.  } 
16. }

5
The #pragma at line 5 instructs the compiler to map the inner ‘j’ 
loop to the second level of parallelism on the accelerator. 
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Motivation
– OpenACC programmers can often start with writing a sequential version 

and then annotate their sequential program with OpenACC directives. 
– leave most of the details in generating a kernel, memory allocation, and data transfers 

to the OpenACC compiler. 

– OpenACC code can be compiled by non-OpenACC compilers by 
ignoring the pragmas.

7
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Frequently Encountered Issues
– Some OpenACC pragmas are hints to the OpenACC compiler, which may or may not 

be able to act accordingly
– The performance of an OpenACC program depends heavily on the quality of the compiler.
– It may be hard to figure out why the compiler cannot act according to your hints
– The uncertainty is much less so for CUDA or OpenCL programs

8
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OpenACC Device Model

Currently OpenACC does not expose synchronization 
across threads to the programmers.

vector vector

vector vector

thread thread

threadthread

execution unitexecution unit

execution unitexecution unit



48 

OpenACC Execution Model

launch

sync

Host Accelerator

vector 
operations

workers
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Objective
– To understand some important and sometimes subtle details in 

OpenACC programming 
– parallel loops
– simple examples to illustrate basic concepts and functionalities

© Wen-mei W. Hwu and John 
Stone, Urbana July 22, 2010
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Parallel vs. Loop Constructs
#pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) 
copyout(P[0:Mh*Nw])
for (int i=0; i<Mh; i++) {
…
}

is equivalent to: 

#pragma acc parallel copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) 
copyout(P[0:Mh*Nw])
{
      #pragma acc loop 
      for (int i=0; i<Mh; i++) {
          …
      }
} 

(a parallel region that consists of a single loop)
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More on Parallel Construct

– A parallel construct is executed on an accelerator
– One can specify the number of gangs and number of workers in 

each gang
– Equivalent to CUDA blocks and threads

#pragma acc parallel copyout(a) num_gangs(1024) num_workers(32)
{
     a = 23;
} 

1024*32 workers will be created. a=23 will be executed 
redundantly by all 1024 gang leads 
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What Does Each “Gang Loop” Do?

#pragma acc parallel num_gangs(1024)
{
     for (int i=0; i<2048; i++) {
          …
     }
} 

#pragma acc parallel num_gangs(1024)
{
#pragma acc loop gang
     for (int i=0; i<2048; i++) {
          …
     }
}     



54 

Worker Loop
#pragma acc parallel num_gangs(1024) num_workers(32)
{
     #pragma acc loop gang
     for (int i=0; i<2048; i++) {
          #pragma acc loop worker 
          for (int j=0; j<512; j++) {
              foo(i,j);
         }
     }
} 

1024*32=32K workers will be created, each executing 1M/32K = 32 instance of foo()
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A More Substantial Example

– Statements 1, 3, 5, 6 are redundantly 
executed by 32 gangs

#pragma acc parallel num_gangs(32)
{
     Statement 1; 
     #pragma acc loop gang
     for (int i=0; i<n; i++) {
         Statement 2;
     }
     Statement 3;
     #pragma acc loop gang
     for (int i=0; i<m; i++) {
         Statement 4;
     }
     Statement 5;
     if (condition) Statement 6;
}
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A More Substantial Example

– The iterations of the n and m for-loop 
iterations are distributed to 32 gangs

– Each gang could further distribute the 
iterations to its workers

– The number of workers in each gang 
will be determined by the 
compiler/runtime

#pragma acc parallel num_gangs(32)
{
     Statement 1; 
     #pragma acc loop gang
     for (int i=0; i<n; i++) {
         Statement 2; 
     }
     Statement 3;
     #pragma acc loop gang
     for (int i=0; i<m; i++) {
         Statement 4;  
     }
     Statement 5;
     if (condition) Statement 6;
}
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Avoiding Redundant Execution

#pragma acc parallel 
num_gangs(1) num_workers(32)
{
     Statement 1;
     #pragma acc loop worker
     for (int i=0; i<n; i++) {
         Statement 2;
     }
     Statement 3;
     #pragma acc loop worker
     for (int i=0; i<m; i++) {
         Statement 4;
   }
   Statement 5;
    if (condition)  Statement 6;
}

– Statements 1, 3, 5, 6 will be executed 
only once

– Iterations of the n and m loops will be 
distributed to 32 workers
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Kernel Regions

#pragma acc kernels
{
     #pragma acc loop gang(1024)
     for (int i=0; i<2048; i++) {
          a[i] = b[i];
     }
     #pragma acc loop gang(512)
     for (int j=0; j<2048; j++) {
          c[j] = a[j]*2;
     }
     for (int k=0; k<2048; k++) {
          d[k] = c[k];
     }
} 

– Kernel constructs are descriptive of 
programmer intentions 

– The compiler has a lot of flexibility in its 
use of the information

– This is in contrast with Parallel, 
which is prescriptive of the action for 
the compile follow
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Kernel Regions

#pragma acc kernels
{
     #pragma acc loop gang(1024)
     for (int i=0; i<2048; i++) {
          a[i] = b[i];
     }
     #pragma acc loop gang(512)
     for (int j=0; j<2048; j++) {
          c[j] = a[j]*2;
     }
     for (int k=0; k<2048; k++) {
          d[k] = c[k];
     }
} 

– Code in a kernel region can be broken 
into multiple CUDA/OpenCL kernels

– The i, j, k loops can each become a 
kernel

– The k-loop may even remain as host code

– Each kernel can have a different 
gang/worker configuration
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