
CSE 599 I
Accelerated Computing -

Programming GPUS
OpenCL / OpenACC

Accelerated Computing

GPU Teaching Kit

Lecture 20.1 - OpenCL Data Parallelism Model
Lecture 20 – Related Programming Models: OpenCL

3

Objective
– To Understand the OpenCL programming model

– basic concepts and data types
– Kernel structure
– Application programming interface
– Simple examples

4

Background
– OpenCL was initiated by Apple and maintained by the Khronos

Group (also home of OpenGL) as an industry standard API
– For cross-platform parallel programming in CPUs, GPUs, DSPs, FPGAs,…

– OpenCL draws heavily on CUDA
– Easy to learn for CUDA programmers

– OpenCL host code is much more complex and tedious due to
desire to maximize portability and to minimize burden on vendors

5

OpenCL Programs
– An OpenCL “program” is a C program that contains one or more

“kernels” and any supporting routines that run on a target device
– An OpenCL kernel is the basic unit of parallel code that can be

executed on a target device

Kernel A

Kernel B

Kernel C

Misc support
 functions

OpenCL Program

6

OpenCL Execution Model
– Integrated host+device app C program

– Serial or modestly parallel parts in host C code
– Highly parallel parts in device SPMD kernel C code

. . .

. . .

7

OpenCL Parallelism
Concept

CUDA Equivalent

host host
device device
kernel kernel
host program host program
NDRange (index space) grid
work item thread
work group block

Mapping between OpenCL and CUDA data
parallelism model concepts.

8

OpenCL Kernels
– Code that executes on target devices
– Kernel body is instantiated once for each work item

– An OpenCL work item is equivalent to a CUDA thread

– Each OpenCL work item gets a unique index

__kernel void vadd(__global const float *a,
 __global const float *b,
 __global float *result)
{
 int id = get_global_id(0);
 result[id] = a[id] + b[id];
}

9

Array of Work Items
– An OpenCL kernel is executed by an array of work items

– All work items run the same code (SPMD)
– Each work item can call get_global_id() to get its index for computing memory

addresses and make control decisions

…
int id = get_global_id(0);
result[id] = a[id] + b [id];
…

work items

work group 0

…
…
int id = get_global_id(0);
result[id] = a[id] + b [id];
…

work group 1

…
int id = get_global_id(0);
result[id] = a[id] + b [id];
…

work group 7
76543210 15141312111098

6362616059585756

56 57 58 59 60 61 62 63

10

Work Groups: Scalable Cooperation
– Divide monolithic work item array into work groups

– Work items within a work group cooperate via shared memory and barrier
synchronization

– Work items in different work groups cannot cooperate

– OpenCL counterpart of CUDA Thread Blocks

11

OpenCL API Call Explanation CUDA Equivalent
get_global_id(0); global index of the

work item in the x
dimension

blockIdx.x*blockDim.x
+threadIdx.x

get_local_id(0) local index of the
work item within the
work group in the x
dimension

threadIdx.x

get_global_size(0); size of NDRange in
the x dimension

gridDim.x*blockDim.x

get_local_size(0); Size of each work
group in the x
dimension

blockDim.x

OpenCL Dimensions and Indices

12

Multidimensional Work Indexing

13

OpenCL Data Parallel Model Summary
– Parallel work is submitted to devices by launching

kernels
– Kernels run over global dimension index ranges

(NDRange), broken up into “work groups”, and “work
items”

– Work items executing within the same work group can
synchronize with each other with barriers or memory
fences

– Work items in different work groups can’t sync with each
other, except by terminating the kernel

Accelerated Computing

GPU Teaching Kit

Lecture 20.2 - OpenCL Device Architecture
Module 20 – Related Programming Models: OpenCL

15

Objective
– To Understand the OpenCL device architecture

– Foundation to terminology used in the host code
– Also needed to understand the memory model for kernels

16

OpenCL Hardware Abstraction
– OpenCL exposes CPUs, GPUs, and other Accelerators

as “devices”
– Each device contains one or more “compute units”, i.e.

cores, Streaming Multiprocessors, etc...
– Each compute unit contains one or more SIMD

“processing elements”, (i.e. SP in CUDA)

OpenCL Device
Compute Unit
PEPEPEPE

PEPEPEPE

Compute Unit

PEPEPEPE

PEPEPEPE

17

OpenCL Device Architecture

18

Memory Type Host access Device access CUDA Equivalent
global memory Dynamic

allocation;
Read/write
access

No allocation;
Read/write access by
all work items in all
work groups, large
and slow but may be
cached in some
devices.

global memory

constant memory Dynamic
allocation;
read/write
access

Static allocation;
read-only access by
all work items.

constant memory

local memory Dynamic
allocation; no
access

Static allocation;
shared read-write
access by all work
items in a work
group.

shared memory

private memory No allocation; no
access

Static allocation;
Read/write access
by a single work
item.

registers and local
memory

OpenCL Device Memory Types

19

OpenCL Context
– Contains one or more devices
– OpenCL device memory objects are associated with a context, not a

specific device

OpenCL Device

OpenCL Device

OpenCL Context

Accelerated Computing

GPU Teaching Kit

Lecture 20.3 - OpenCL Host Code
Module 20 – Related Programming Models: OpenCL

21

Objective
– To learn to write OpenCL host code

– Create OpenCL context
– Create work queues for task parallelism
– Device memory Allocation
– Kernel compilation
– Kernel launch
– Host-device data copy

22

OpenCL Context
– Contains one or more devices
– OpenCL memory objects are associated with a context, not a

specific device
– clCreateBuffer() is the main data object allocation function

– error if an allocation is too large for any device in the context
– Each device needs its own work queue(s)
– Memory copy transfers are associated with a command queue (thus

a specific device)

23

OpenCL Context Setup Code (simple)
cl_int clerr = CL_SUCCESS;

cl_context clctx = clCreateContextFromType(0, CL_DEVICE_TYPE_ALL,
NULL, NULL, &clerr);

size_t parmsz;
clerr = clGetContextInfo(clctx, CL_CONTEXT_DEVICES, 0, NULL, &parmsz);

cl_device_id* cldevs = (cl_device_id *) malloc(parmsz);
clerr = clGetContextInfo(clctx, CL_CONTEXT_DEVICES, parmsz, cldevs,
NULL);

cl_command_queue clcmdq = clCreateCommandQueue(clctx, cldevs[0], 0,
&clerr);

24

OpenCL Kernel Compilation: vadd
const char* vaddsrc =
 “__kernel void vadd(__global float *d_A, __global float *d_B,
__global float *d_C, int N) { \n“ […etc and so forth…]

cl_program clpgm;
clpgm = clCreateProgramWithSource(clctx, 1, &vaddsrc, NULL,
&clerr);

char clcompileflags[4096];
sprintf(clcompileflags, “-cl-mad-enable");
clerr = clBuildProgram(clpgm, 0, NULL, clcompileflags, NULL, NULL);
cl_kernel clkern = clCreateKernel(clpgm, “vadd", &clerr);

OpenCL kernel source code as a big string

Gives raw source code string(s) to OpenCL

Set compiler flags, compile source, and
retrieve a handle to the “vadd” kernel

25

OpenCL Device Memory Allocation
– clCreateBuffer();

– Allocates object in the device Global Memory
– Returns a pointer to the object
– Requires five parameters

– OpenCL context pointer
– Flags for access type by device (read/write, etc.)
– Size of allocated object
– Host memory pointer, if used in copy-from-host mode
– Error code

– clReleaseMemObject()
– Frees object

– Pointer to freed object

26

OpenCL Device Memory Allocation (cont.)

– Code example:
– Allocate a 1024 single precision float array
– Attach the allocated storage to d_a
– “d_” is often used to indicate a device data structure

VECTOR_SIZE = 1024;
cl_mem d_a;
int size = VECTOR_SIZE* sizeof(float);

d_a = clCreateBuffer(clctx,
CL_MEM_READ_ONLY, size, NULL, NULL);

…

clReleaseMemObject(d_a);

27

OpenCL Device Command Execution

OpenCL Device

Cmd QueueCommandApplication

Cmd Queue
Command

OpenCL Device

OpenCL Context

28

OpenCL Host-to-Device Data Transfer
– clEnqueueWriteBuffer();

– Memory data transfer to device
– Requires nine parameters

– OpenCL command queue pointer
– Destination OpenCL memory buffer
– Blocking flag
– Offset in bytes
– Size (in bytes) of written data
– Source host memory pointer
– List of events to be completed before execution of this command
– Event object tied to this command

29

OpenCL Device-to-Host Data Transfer
– clEnqueueReadBuffer();

– Memory data transfer to host
– requires nine parameters

– OpenCL command queue pointer
– Source OpenCL memory buffer
– Blocking flag
– Offset in bytes
– Size of bytes of read data
– Destination host memory pointer
– List of events to be completed before execution of this command
– Event object tied to this command

30

OpenCL Host-Device Data Transfer (cont.)
– Code example:

– Transfer a 64 * 64 single precision float array
– a is in host memory and d_a is in device memory

clEnqueueWriteBuffer(clcmdq, d_a, CL_FALSE, 0,
mem_size, (const void *)a, 0, 0, NULL);

clEnqueueReadBuffer(clcmdq, d_result, CL_FALSE,
0,
mem_size, (void *) host_result, 0, 0,

NULL);

31

OpenCL Host-Device Data Transfer (cont.)
– clCreateBuffer and clEnqueueWriteBuffer can be

combined into a single command using special flags.
– Eg:

d_A=clCreateBuffer(clctxt,CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
mem_size, h_A, NULL);

– Combination of 2 flags here. CL_MEM_COPY_HOST_PTR to be used
only if a valid host pointer is specified.

– This creates a memory buffer on the device, and copies data from
h_A into d_A.

– Includes an implicit clEnqueueWriteBuffer operation, for all
devices/command queues tied to the context clctxt.

32

Device Memory Allocation and Data Transfer for
vadd
float *h_A = …, *h_B = …;
 // allocate device (GPU) memory
 cl_mem d_A, d_B, d_C;
 d_A = clCreateBuffer(clctx, CL_MEM_READ_ONLY |
 CL_MEM_COPY_HOST_PTR, N *sizeof(float), h_A, NULL);
 d_B = clCreateBuffer(clctx, CL_MEM_READ_ONLY |
 CL_MEM_COPY_HOST_PTR, N *sizeof(float), h_B, NULL);
 d_C = clCreateBuffer(clctx, CL_MEM_WRITE_ONLY,

N *sizeof(float), NULL, NULL);

33

Device Kernel Configuration Setting for vadd
 clkern=clCreateKernel(clpgm, “vadd", NULL);
 …
 clerr= clSetKernelArg(clkern, 0, sizeof(cl_mem),(void *)&d_A);
 clerr= clSetKernelArg(clkern, 1, sizeof(cl_mem),(void *)&d_B);
 clerr= clSetKernelArg(clkern, 2, sizeof(cl_mem),(void *)&d_C);
 clerr= clSetKernelArg(clkern, 3, sizeof(int), &N);

34

Device Kernel Launch and Remaining Code for vadd

cl_event event=NULL;
clerr= clEnqueueNDRangeKernel(clcmdq, clkern, 2, NULL,

Gsz, Bsz, 0, NULL, &event);
clerr= clWaitForEvents(1, &event);
clEnqueueReadBuffer(clcmdq, d_C, CL_TRUE, 0,

N*sizeof(float), h_C, 0, NULL, NULL);
clReleaseMemObject(d_A);
clReleaseMemObject(d_B);
clReleaseMemObject(d_C);
}

Introduction to OpenACC
Lecture 21.1 - Related Programming Models: OpenACC

GPU Teaching Kit
Accelerated Computing

36

Objective
– To understand the OpenACC programming model

– basic concepts and pragma types
– simple examples

2

37

OpenACC
– The OpenACC Application Programming Interface provides a set of

– compiler directives (pragmas)
– library routines and
– environment variables
that can be used to write data parallel Fortran, C and C++ programs
that run on accelerator devices including GPUs and CPUs

3

38

OpenACC Pragmas
– In C and C++, the #pragma directive is the method to provide to the

compiler information that is not specified in the standard language.
– These pragmas extend the base language

4

39

Vector Addition in OpenACC

void VecAdd(float * __restrict__ output, const float * input1, const float * input 2, int inputLength)
{
 #pragma acc parallel loop copyin(input1[0:inputLength],input2[0:inputLength]),
copyout(output[0:inputLength])
 for(i = 0; i < inputLength; ++i) {
 output[i] = input1[i] + input2[i];
 }
}

5

40

Simple Matrix-Matrix Multiplication in OpenACC

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3. #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw])
4. for (int i=0; i<Mh; i++) {
5. #pragma acc loop
6. for (int j=0; j<Nw; j++) {
7. float sum = 0;
8. for (int k=0; k<Mw; k++) {
9. float a = M[i*Mw+k];
10. float b = N[k*Nw+j];
11. sum += a*b;
12. }
13. P[i*Nw+j] = sum;
14. }
15. }
16. }

5

41

Some Observations (1)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3. #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw])
4. for (int i=0; i<Mh; i++) {
5. #pragma acc loop
6. for (int j=0; j<Nw; j++) {
7. float sum = 0;
8. for (int k=0; k<Mw; k++) {
9. float a = M[i*Mw+k];
10. float b = N[k*Nw+j];
11. sum += a*b;
12. }
13. P[i*Nw+j] = sum;
14. }
15. }
16. }

5The code is almost identical to the sequential version,
except for the two lines with #pragma at line 3 and line 5.

42

Some Observations (2)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3. #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw])
4. for (int i=0; i<Mh; i++) {
5. #pragma acc loop
6. for (int j=0; j<Nw; j++) {
7. float sum = 0;
8. for (int k=0; k<Mw; k++) {
9. float a = M[i*Mw+k];
10. float b = N[k*Nw+j];
11. sum += a*b;
12. }
13. P[i*Nw+j] = sum;
14. }
15. }
16. }

5
The #pragma at line 3 tells the compiler to generate code for the ‘i’
loop at line 4 through 15 so that the loop iterations are executed at
the first level of parallelism on the accelerator.

43

Some Observations (3)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3. #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw])
4. for (int i=0; i<Mh; i++) {
5. #pragma acc loop
6. for (int j=0; j<Nw; j++) {
7. float sum = 0;
8. for (int k=0; k<Mw; k++) {
9. float a = M[i*Mw+k];
10. float b = N[k*Nw+j];
11. sum += a*b;
12. }
13. P[i*Nw+j] = sum;
14. }
15. }
16. }

5
The copyin() clause and the copyout() clause specify how the
compiler should arrange for the matrix data to be transferred
between the host and the accelerator.

44

Some Observations (4)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3. #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw])
4. for (int i=0; i<Mh; i++) {
5. #pragma acc loop
6. for (int j=0; j<Nw; j++) {
7. float sum = 0;
8. for (int k=0; k<Mw; k++) {
9. float a = M[i*Mw+k];
10. float b = N[k*Nw+j];
11. sum += a*b;
12. }
13. P[i*Nw+j] = sum;
14. }
15. }
16. }

5
The #pragma at line 5 instructs the compiler to map the inner ‘j’
loop to the second level of parallelism on the accelerator.

45

Motivation
– OpenACC programmers can often start with writing a sequential version

and then annotate their sequential program with OpenACC directives.
– leave most of the details in generating a kernel, memory allocation, and data transfers

to the OpenACC compiler.

– OpenACC code can be compiled by non-OpenACC compilers by
ignoring the pragmas.

7

46

Frequently Encountered Issues
– Some OpenACC pragmas are hints to the OpenACC compiler, which may or may not

be able to act accordingly
– The performance of an OpenACC program depends heavily on the quality of the compiler.
– It may be hard to figure out why the compiler cannot act according to your hints
– The uncertainty is much less so for CUDA or OpenCL programs

8

47

OpenACC Device Model

Currently OpenACC does not expose synchronization
across threads to the programmers.

vector vector

vector vector

thread thread

threadthread

execution unitexecution unit

execution unitexecution unit

48

OpenACC Execution Model

launch

sync

Host Accelerator

vector
operations

workers

OpenACC Subtleties
Lecture 21.2 - Related Programming Models: OpenACC

GPU Teaching Kit
Accelerated Computing

50

Objective
– To understand some important and sometimes subtle details in

OpenACC programming
– parallel loops
– simple examples to illustrate basic concepts and functionalities

© Wen-mei W. Hwu and John
Stone, Urbana July 22, 2010

51

Parallel vs. Loop Constructs
#pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw])
copyout(P[0:Mh*Nw])
for (int i=0; i<Mh; i++) {
…
}

is equivalent to:

#pragma acc parallel copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw])
copyout(P[0:Mh*Nw])
{
 #pragma acc loop
 for (int i=0; i<Mh; i++) {
 …
 }
}

(a parallel region that consists of a single loop)

52

More on Parallel Construct

– A parallel construct is executed on an accelerator
– One can specify the number of gangs and number of workers in

each gang
– Equivalent to CUDA blocks and threads

#pragma acc parallel copyout(a) num_gangs(1024) num_workers(32)
{
 a = 23;
}

1024*32 workers will be created. a=23 will be executed
redundantly by all 1024 gang leads

53

What Does Each “Gang Loop” Do?

#pragma acc parallel num_gangs(1024)
{
 for (int i=0; i<2048; i++) {
 …
 }
}

#pragma acc parallel num_gangs(1024)
{
#pragma acc loop gang
 for (int i=0; i<2048; i++) {
 …
 }
}

54

Worker Loop
#pragma acc parallel num_gangs(1024) num_workers(32)
{
 #pragma acc loop gang
 for (int i=0; i<2048; i++) {
 #pragma acc loop worker
 for (int j=0; j<512; j++) {
 foo(i,j);
 }
 }
}

1024*32=32K workers will be created, each executing 1M/32K = 32 instance of foo()

55

A More Substantial Example

– Statements 1, 3, 5, 6 are redundantly
executed by 32 gangs

#pragma acc parallel num_gangs(32)
{
 Statement 1;
 #pragma acc loop gang
 for (int i=0; i<n; i++) {
 Statement 2;
 }
 Statement 3;
 #pragma acc loop gang
 for (int i=0; i<m; i++) {
 Statement 4;
 }
 Statement 5;
 if (condition) Statement 6;
}

56

A More Substantial Example

– The iterations of the n and m for-loop
iterations are distributed to 32 gangs

– Each gang could further distribute the
iterations to its workers

– The number of workers in each gang
will be determined by the
compiler/runtime

#pragma acc parallel num_gangs(32)
{
 Statement 1;
 #pragma acc loop gang
 for (int i=0; i<n; i++) {
 Statement 2;
 }
 Statement 3;
 #pragma acc loop gang
 for (int i=0; i<m; i++) {
 Statement 4;
 }
 Statement 5;
 if (condition) Statement 6;
}

57

Avoiding Redundant Execution

#pragma acc parallel
num_gangs(1) num_workers(32)
{
 Statement 1;
 #pragma acc loop worker
 for (int i=0; i<n; i++) {
 Statement 2;
 }
 Statement 3;
 #pragma acc loop worker
 for (int i=0; i<m; i++) {
 Statement 4;
 }
 Statement 5;
 if (condition) Statement 6;
}

– Statements 1, 3, 5, 6 will be executed
only once

– Iterations of the n and m loops will be
distributed to 32 workers

58

Kernel Regions

#pragma acc kernels
{
 #pragma acc loop gang(1024)
 for (int i=0; i<2048; i++) {
 a[i] = b[i];
 }
 #pragma acc loop gang(512)
 for (int j=0; j<2048; j++) {
 c[j] = a[j]*2;
 }
 for (int k=0; k<2048; k++) {
 d[k] = c[k];
 }
}

– Kernel constructs are descriptive of
programmer intentions

– The compiler has a lot of flexibility in its
use of the information

– This is in contrast with Parallel,
which is prescriptive of the action for
the compile follow

59

Kernel Regions

#pragma acc kernels
{
 #pragma acc loop gang(1024)
 for (int i=0; i<2048; i++) {
 a[i] = b[i];
 }
 #pragma acc loop gang(512)
 for (int j=0; j<2048; j++) {
 c[j] = a[j]*2;
 }
 for (int k=0; k<2048; k++) {
 d[k] = c[k];
 }
}

– Code in a kernel region can be broken
into multiple CUDA/OpenCL kernels

– The i, j, k loops can each become a
kernel

– The k-loop may even remain as host code

– Each kernel can have a different
gang/worker configuration

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

