
CSE 599 I
Accelerated Computing -

Programming GPUS
CUDA Parallelism Model

Accelerated Computing

GPU Teaching Kit

Kernel-Based SPMD Parallel Programming

Module 3.1 - CUDA Parallelism Model

3

Objective
– To learn the basic concepts involved in a simple CUDA kernel

function
– Declaration
– Built-in variables
– Thread index to data index mapping

2

4

Example: Vector Addition Kernel

// Compute vector sum C = A + B
// Each thread performs one pair-wise addition

__global__
void vecAddKernel(float* A, float* B, float* C, int n)
{
 int i = threadIdx.x+blockDim.x*blockIdx.x;
 if(i<n) C[i] = A[i] + B[i];
}

Device Code

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3blockIdx:

threadIdx:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15i:

int i = blockIdx.x * blockDim.x + threadIdx.x;

6

Example: Vector Addition Kernel Launch (Host
Code)

void vecAdd(float* h_A, float* h_B, float* h_C, int n)
{
 // d_A, d_B, d_C allocations and copies omitted
 // Run ceil(n/256.0) blocks of 256 threads each
 vecAddKernel<<<ceil(n/256.0),256>>>(d_A, d_B, d_C, n);
}

Host Code

4

The ceiling function makes sure that there
are enough threads to cover all elements.

7

More on Kernel Launch (Host Code)

void vecAdd(float* h_A, float* h_B, float* h_C, int n)
{
 dim3 DimGrid((n-1)/256 + 1, 1, 1);
 dim3 DimBlock(256, 1, 1);
 vecAddKernel<<<DimGrid,DimBlock>>>(d_A, d_B, d_C, n);
}

7

Host Code

This is an equivalent way to express the
ceiling function.

8

__host__
void vecAdd(…)
{
 dim3 DimGrid(ceil(n/256.0),1,1);
 dim3 DimBlock(256,1,1);
vecAddKernel<<<DimGrid,DimBlock>>>(d_A,d_B
,d_C,n);
}

Kernel execution in a nutshell

8

GridBlk 0 Blk N-1
• • •

GPUM0
RAM

Mk• • •

__global__
void vecAddKernel(float *A,
 float *B, float *C, int n)
{
 int i = blockIdx.x * blockDim.x
 + threadIdx.x;

 if(i<n) C[i] = A[i]+B[i];
}

9

More on CUDA Function Declarations

− __global__ defines a kernel function
− Each “__” consists of two underscore characters
− A kernel function must return void

− __device__ and __host__ can be used together
− __host__ is optional if used alone

9

hosthost__host__ float HostFunc()

hostdevice__global__ void KernelFunc()

devicedevice__device__ float DeviceFunc()

Only callable from
the:

Executed on
the:

10

Integrated C programs with CUDA extensions

NVCC Compiler

Host C Compiler/ Linker

Host Code Device Code (PTX)

Device Just-in-Time Compiler

Heterogeneous Computing Platform with
CPUs, GPUs, etc.

Compiling A CUDA Program

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

Accelerated Computing

GPU Teaching KitGPU Teaching Kit

Multidimensional Kernel Configuration
Lecture 3.2 – CUDA Parallelism Model

GPU Teaching Kit

13

Objective
– To understand multidimensional Grids

– Multi-dimensional block and thread indices
– Mapping block/thread indices to data indices

2

14

host device

Kernel 1

Grid 1 Block
(0, 0)

Block
(1, 1)

Block
(1, 0)

Block
(0, 1)

Grid 2

Block (1,0)

Thread
(0,0,0)Thread

(0,1,3)
Thread
(0,1,0)

Thread
(0,1,1)

Thread
(0,1,2)

Thread
(0,0,0)

Thread
(0,0,1)

Thread
(0,0,2)

Thread
(0,0,3)

(1,0,0) (1,0,1) (1,0,2) (1,0,3)

A Multi-Dimensional Grid Example

14

15

Processing a Picture with a 2D Grid

16

M

0,2M

1,1

M

0,1

M

0,0M

1,0

M

0,3M

1,2

M

1,3

M

0,2

M

0,1

M

0,0

M

0,3

M

1,1

M

1,0

M

1,2

M

1,3

M

2,1

M

2,0

M

2,2

M

2,3

M

2,1

M

2,0

M

2,2

M

2,3M

3,1

M

3,0

M

3,2

M

3,3

M

3,1

M

3,0

M

3,2

M

3,3

M

Row*Width+Col = 2*4+1 = 9
M

2

M

1

M

0

M

3

M

5

M

4

M

6

M

7

M

9

M

8

M

10

M

11

M

13

M

12

M

14

M

15

M

Row-Major Layout in C/C++

17

Source Code of a PictureKernel

__global__ void PictureKernel(float* d_Pin, float* d_Pout,
int height, int width)

{

 // Calculate the row # of the d_Pin and d_Pout element
 int Row = blockIdx.y*blockDim.y + threadIdx.y;

 // Calculate the column # of the d_Pin and d_Pout

element
 int Col = blockIdx.x*blockDim.x + threadIdx.x;

 // each thread computes one element of d_Pout if in
range

 if ((Row < height) && (Col < width)) {
 d_Pout[Row*width+Col] = 2.0*d_Pin[Row*width+Col];
 }
} Scale every pixel value by 2.0

18

Host Code for Launching PictureKernel
–

19

Not all threads in a Block will follow the same control flow path.

Accelerated Computing

GPU Teaching KitGPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

Accelerated Computing

GPU Teaching Kit

Color-to-Grayscale Image Processing Example

Lecture 3.3 – CUDA Parallelism Model

GPU Teaching Kit

22

Objective
– To gain deeper understanding of multi-dimensional grid kernel

configurations through a real-world use case

2

23

RGB Color Image Representation

– Each pixel in an image is an RGB value
– The format of an image’s row is

 (r g b) (r g b) … (r g b)
– RGB ranges are not distributed uniformly
– Many different color spaces, here we show the

constants to convert to AdbobeRGB color space
– The vertical axis (y value) and horizontal axis (x value) show

the fraction of the pixel intensity that should be allocated to G
and B. The remaining fraction (1-y–x) of the pixel intensity
that should be assigned to R

– The triangle contains all the representable colors in this color
space

24

RGB to Grayscale Conversion

A grayscale digital image is an image in which the value of
each pixel carries only intensity information.

25

Color Calculating Formula

– For each pixel (r g b) at (I, J) do:
grayPixel[I,J] = 0.21*r + 0.71*g + 0.07*b

– This is just a dot product <[r,g,b],[0.21,0.71,0.07]> with the
constants being specific to input RGB space

0.21
0.71

0.07

26

RGB to Grayscale Conversion Code
#define CHANNELS 3 // we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__ void colorConvert(unsigned char * grayImage,

 unsigned char * rgbImage,
 int width, int height) {
 int x = threadIdx.x + blockIdx.x * blockDim.x;
 int y = threadIdx.y + blockIdx.y * blockDim.y;

 if (x < width && y < height) {
 // get 1D coordinate for the grayscale image
 int grayOffset = y*width + x;
 // one can think of the RGB image having
 // CHANNEL times columns than the gray scale image
 int rgbOffset = grayOffset*CHANNELS;
 unsigned char r = rgbImage[rgbOffset]; // red value for pixel
 unsigned char g = rgbImage[rgbOffset + 2]; // green value for
pixel
 unsigned char b = rgbImage[rgbOffset + 3]; // blue value for pixel
 // perform the rescaling and store it
 // We multiply by floating point constants
 grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;
 }
}

27

RGB to Grayscale Conversion Code
#define CHANNELS 3 // we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__ void colorConvert(unsigned char * grayImage,

 unsigned char * rgbImage,
 int width, int height) {
 int x = threadIdx.x + blockIdx.x * blockDim.x;
 int y = threadIdx.y + blockIdx.y * blockDim.y;

 if (x < width && y < height) {
 // get 1D coordinate for the grayscale image
 int grayOffset = y*width + x;
 // one can think of the RGB image having
 // CHANNEL times columns than the gray scale image
 int rgbOffset = grayOffset*CHANNELS;
 unsigned char r = rgbImage[rgbOffset]; // red value for pixel
 unsigned char g = rgbImage[rgbOffset + 1]; // green value for
pixel
 unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pixel
 // perform the rescaling and store it
 // We multiply by floating point constants
 grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;
 }
}

28

RGB to Grayscale Conversion Code
#define CHANNELS 3 // we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__ void colorConvert(unsigned char * grayImage,

 unsigned char * rgbImage,
 int width, int height) {
 int x = threadIdx.x + blockIdx.x * blockDim.x;
 int y = threadIdx.y + blockIdx.y * blockDim.y;

 if (x < width && y < height) {
 // get 1D coordinate for the grayscale image
 int grayOffset = y*width + x;
 // one can think of the RGB image having
 // CHANNEL times columns than the gray scale image
 int rgbOffset = grayOffset*CHANNELS;
 unsigned char r = rgbImage[rgbOffset]; // red value for pixel
 unsigned char g = rgbImage[rgbOffset + 2]; // green value for
pixel
 unsigned char b = rgbImage[rgbOffset + 3]; // blue value for pixel
 // perform the rescaling and store it
 // We multiply by floating point constants
 grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;
 }
}

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

Accelerated Computing

GPU Teaching KitGPU Teaching Kit

Image Blur Example
Lecture 3.4 – CUDA Parallelism Model

GPU Teaching Kit

31

Objective

– To learn a 2D kernel with more complex computation and memory
access patterns

32

Image Blurring

33

Pixels
processed
by a thread
block

Blurring Box

34

Image Blur as a 2D Kernel

 __global__
 void blurKernel(unsigned char * in, unsigned char * out, int w, int h)
 {
 int Col = blockIdx.x * blockDim.x + threadIdx.x;
 int Row = blockIdx.y * blockDim.y + threadIdx.y;

 if (Col < w && Row < h) {
 ... // Rest of our kernel
 }
 }

35

 __global__
 void blurKernel(unsigned char * in, unsigned char * out, int w, int h) {
 int Col = blockIdx.x * blockDim.x + threadIdx.x;
 int Row = blockIdx.y * blockDim.y + threadIdx.y;

 if (Col < w && Row < h) {
 int pixVal = 0;
 int pixels = 0;

 // Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
 for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {
 for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {

 int curRow = Row + blurRow;
 int curCol = Col + blurCol;
 // Verify we have a valid image pixel
 if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
 pixVal += in[curRow * w + curCol];
 pixels++; // Keep track of number of pixels in the accumulated total
 }
 }
 }

 // Write our new pixel value out
 out[Row * w + Col] = (unsigned char)(pixVal / pixels);
 }
 }

Accelerated Computing

GPU Teaching KitGPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

Thread Scheduling

Lecture 3.5 – CUDA Parallelism Model

Accelerated Computing

GPU Teaching Kit

38

Objective
– To learn how a CUDA kernel utilizes hardware execution resources

– Assigning thread blocks to execution resources
– Capacity constrains of execution resources
– Zero-overhead thread scheduling

39

Transparent Scalability

– Each block can execute in any order relative to others.
– Hardware is free to assign blocks to any processor at any time

– A kernel scales to any number of parallel processors

Device

Blo
ck
0

Blo
ck
1Blo

ck
2

Blo
ck
3Blo

ck
4

Blo
ck
5Blo

ck
6

Blo
ck
7

Thread grid

Blo
ck
0

Blo
ck
1Blo

ck
2

Blo
ck
3Blo

ck
4

Blo
ck
5Blo

ck
6

Blo
ck
7

Device

Blo
ck
0

Blo
ck
1

Blo
ck
2

Blo
ck
3Blo

ck
4

Blo
ck
5

Blo
ck
6

Blo
ck
7

tim
e

40

Example: Executing Thread Blocks

– Threads are assigned to Streaming
Multiprocessors (SM) in block granularity
– Up to 8 blocks to each SM as resource allows
– Fermi SM can take up to 1536 threads

– Could be 256 (threads/block) * 6 blocks
– Or 512 (threads/block) * 3 blocks, etc.

– SM maintains thread/block idx #s
– SM manages/schedules thread execution

t0 t1 t2 … tm

Blocks

SPShared
Memory

SM

41

The Von-Neumann Model

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

42

The Von-Neumann Model with SIMD units

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

Single Instruction Multiple Data
(SIMD)

43

Warps as Scheduling Units

• Each Block is executed as 32-thread Warps
– An implementation decision, not part of the

CUDA programming model
– Warps are scheduling units in SM
– Threads in a warp execute in SIMD
– Future GPUs may have different number of

threads in each warp

44

Warp Example
• If 3 blocks are assigned to an SM and each block has 256 threads,

how many Warps are there in an SM?
– Each Block is divided into 256/32 = 8 Warps
– There are 8 * 3 = 24 Warps

…t0 t1 t2 … t31
…

…t0 t1 t2 … t31
…Block 0 Warps Block 1 Warps

…t0 t1 t2 … t31
…Block 2 Warps

Register File

L1 Shared Memory

45

Example: Thread Scheduling (Cont.)
– SM implements zero-overhead warp scheduling

– Warps whose next instruction has its operands ready for consumption are eligible
for execution

– Eligible Warps are selected for execution based on a prioritized scheduling policy
– All threads in a warp execute the same instruction when selected

46

Block Granularity Considerations
– For Matrix Multiplication using multiple blocks,

should I use 8X8, 16X16 or 32X32 blocks for
Fermi?

– For 8X8, we have 64 threads per Block. Since each SM
can take up to 1536 threads, which translates to 24
Blocks. However, each SM can only take up to 8 Blocks,
only 512 threads will go into each SM!

– For 16X16, we have 256 threads per Block. Since each
SM can take up to 1536 threads, it can take up to 6
Blocks and achieve full capacity unless other resource
considerations overrule.

– For 32X32, we would have 1024 threads per Block. Only
one block can fit into an SM for Fermi. Using only 2/3 of
the thread capacity of an SM.

47 47

deviceQuery

48 48

deviceQuery

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

