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Objective
– To learn the basic concepts involved in a simple CUDA kernel 

function
– Declaration
– Built-in variables
– Thread index to data index mapping
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Example: Vector Addition Kernel

// Compute vector sum C = A + B
// Each thread performs one pair-wise addition

__global__
void vecAddKernel(float* A, float* B, float* C, int n)
{
  int i = threadIdx.x+blockDim.x*blockIdx.x;
    if(i<n) C[i] = A[i] + B[i];
}

Device Code
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int i = blockIdx.x * blockDim.x + threadIdx.x;
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Example: Vector Addition Kernel Launch (Host 
Code)

void vecAdd(float* h_A, float* h_B, float* h_C, int n)
{
 // d_A, d_B, d_C allocations and copies omitted 
 // Run ceil(n/256.0) blocks of 256 threads each
  vecAddKernel<<<ceil(n/256.0),256>>>(d_A, d_B, d_C, n);
}

Host Code
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The ceiling function makes sure that there 
are enough threads to cover all elements.
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More on Kernel Launch (Host Code)

void vecAdd(float* h_A, float* h_B, float* h_C, int n)
{
  dim3 DimGrid((n-1)/256 + 1, 1, 1);
  dim3 DimBlock(256, 1, 1);
  vecAddKernel<<<DimGrid,DimBlock>>>(d_A, d_B, d_C, n);
}
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Host Code

This is an equivalent way to express the 
ceiling function.
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__host__
void vecAdd(…)
{
  dim3 DimGrid(ceil(n/256.0),1,1);
  dim3 DimBlock(256,1,1);
vecAddKernel<<<DimGrid,DimBlock>>>(d_A,d_B
,d_C,n);
}

Kernel execution in a nutshell
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__global__
void vecAddKernel(float *A,
     float *B, float *C, int n)
{
   int i = blockIdx.x * blockDim.x
             + threadIdx.x;

   if( i<n ) C[i] = A[i]+B[i];
}
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More on CUDA Function Declarations

− __global__ defines a kernel function
− Each “__” consists of two underscore characters
− A kernel function must return void

− __device__ and __host__ can be used together
− __host__ is optional if used alone

9

hosthost__host__   float HostFunc()

hostdevice__global__ void  KernelFunc()

devicedevice__device__ float DeviceFunc()

Only callable from 
the:

Executed on 
the:
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Integrated C programs with CUDA extensions

NVCC Compiler

Host C Compiler/ Linker

Host Code Device Code (PTX)

Device Just-in-Time Compiler

Heterogeneous Computing Platform with
CPUs, GPUs, etc.

Compiling A CUDA Program



Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under 
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode


Accelerated Computing

GPU Teaching KitGPU Teaching Kit

Multidimensional Kernel Configuration
Lecture 3.2 – CUDA Parallelism Model

GPU Teaching Kit



13 

Objective
– To understand multidimensional Grids 

– Multi-dimensional block and thread indices
– Mapping block/thread indices to data indices

2
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A Multi-Dimensional Grid Example
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Processing a Picture with a 2D Grid
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Source Code of a PictureKernel

__global__ void PictureKernel(float* d_Pin, float* d_Pout, 
int height, int width)

{

  // Calculate the row # of the d_Pin and d_Pout element
  int Row = blockIdx.y*blockDim.y + threadIdx.y;
  
  // Calculate the column # of the d_Pin and d_Pout 

element
  int Col = blockIdx.x*blockDim.x + threadIdx.x;

  // each thread computes one element of d_Pout if in 
range

  if ((Row < height) && (Col < width)) {
    d_Pout[Row*width+Col] = 2.0*d_Pin[Row*width+Col];
  }
} Scale every pixel value by 2.0
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Host Code for Launching PictureKernel
–  
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Not all threads in a Block will follow the same control flow path.
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Objective
– To gain deeper understanding of multi-dimensional grid kernel 

configurations through a real-world use case

2
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RGB Color Image Representation

– Each pixel in an image is an RGB value
– The format of an image’s row is

 (r g b) (r g b) … (r g b)
– RGB ranges are not distributed uniformly
– Many different color spaces, here we show the 

constants to convert to AdbobeRGB color space
– The vertical axis (y value) and horizontal axis (x value) show 

the fraction of the pixel intensity that should be allocated to G 
and B. The remaining fraction (1-y–x)  of the pixel intensity 
that should be assigned to R

– The triangle contains all the representable colors in this color 
space
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RGB to Grayscale Conversion

A grayscale digital image is an image in which the value of 
each pixel carries only intensity information.
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Color Calculating Formula

– For each pixel (r g b) at (I, J) do:
grayPixel[I,J] = 0.21*r + 0.71*g + 0.07*b

– This is just a dot product <[r,g,b],[0.21,0.71,0.07]> with the 
constants being specific to input RGB space

0.21
0.71

0.07
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RGB to Grayscale Conversion Code
#define CHANNELS 3 // we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__ void colorConvert(unsigned char * grayImage,

      unsigned char * rgbImage,
                             int width, int height) {
 int x = threadIdx.x + blockIdx.x * blockDim.x;
 int y = threadIdx.y + blockIdx.y * blockDim.y;

 if (x < width && y < height) {
    // get 1D coordinate for the grayscale image
    int grayOffset = y*width + x;
    // one can think of the RGB image having
    // CHANNEL times columns than the gray scale image
    int rgbOffset = grayOffset*CHANNELS;
    unsigned char r =  rgbImage[rgbOffset      ]; // red value for pixel
    unsigned char g = rgbImage[rgbOffset + 2]; // green value for 
pixel
    unsigned char b = rgbImage[rgbOffset + 3]; // blue value for pixel
    // perform the rescaling and store it
    // We multiply by floating point constants
    grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;
 }
}
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RGB to Grayscale Conversion Code
#define CHANNELS 3 // we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__ void colorConvert(unsigned char * grayImage,

      unsigned char * rgbImage,
                             int width, int height) {
 int x = threadIdx.x + blockIdx.x * blockDim.x;
 int y = threadIdx.y + blockIdx.y * blockDim.y;

 if (x < width && y < height) {
    // get 1D coordinate for the grayscale image
    int grayOffset = y*width + x;
    // one can think of the RGB image having
    // CHANNEL times columns than the gray scale image
    int rgbOffset = grayOffset*CHANNELS;
    unsigned char r =  rgbImage[rgbOffset      ]; // red value for pixel
    unsigned char g = rgbImage[rgbOffset + 1]; // green value for 
pixel
    unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pixel
    // perform the rescaling and store it
    // We multiply by floating point constants
    grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;
 }
}
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RGB to Grayscale Conversion Code
#define CHANNELS 3 // we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__ void colorConvert(unsigned char * grayImage,

      unsigned char * rgbImage,
                             int width, int height) {
 int x = threadIdx.x + blockIdx.x * blockDim.x;
 int y = threadIdx.y + blockIdx.y * blockDim.y;

 if (x < width && y < height) {
    // get 1D coordinate for the grayscale image
    int grayOffset = y*width + x;
    // one can think of the RGB image having
    // CHANNEL times columns than the gray scale image
    int rgbOffset = grayOffset*CHANNELS;
    unsigned char r =  rgbImage[rgbOffset      ]; // red value for pixel
    unsigned char g = rgbImage[rgbOffset + 2]; // green value for 
pixel
    unsigned char b = rgbImage[rgbOffset + 3]; // blue value for pixel
    // perform the rescaling and store it
    // We multiply by floating point constants
    grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;
 }
}
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Objective

– To learn a 2D kernel with more complex computation and memory 
access patterns



32 

Image Blurring
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Pixels 
processed 
by a thread 
block

Blurring Box
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Image Blur as a 2D Kernel

 __global__ 
  void blurKernel(unsigned char * in, unsigned char * out, int w, int h) 
  {
    int Col  = blockIdx.x * blockDim.x + threadIdx.x;
    int Row  = blockIdx.y * blockDim.y + threadIdx.y;

    if (Col < w && Row < h) {
        ... // Rest of our kernel
    }
  }
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 __global__ 
  void blurKernel(unsigned char * in, unsigned char * out, int w, int h) {
      int Col  = blockIdx.x * blockDim.x + threadIdx.x;
      int Row  = blockIdx.y * blockDim.y + threadIdx.y;

      if (Col < w && Row < h) {
          int pixVal = 0;
          int pixels = 0;

          // Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
          for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {
              for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {

                  int curRow = Row + blurRow;
                  int curCol = Col + blurCol;
                  // Verify we have a valid image pixel
                  if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
                      pixVal += in[curRow * w + curCol];
                      pixels++; // Keep track of number of pixels in the accumulated total
                  }
              }
          }

          // Write our new pixel value out
          out[Row * w + Col] = (unsigned char)(pixVal / pixels);
      }
  }
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Objective
– To learn how a CUDA kernel utilizes hardware execution resources

– Assigning thread blocks to execution resources
– Capacity constrains of execution resources
– Zero-overhead thread scheduling
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Transparent Scalability

– Each block can execute in any order relative to others. 
– Hardware is free to assign blocks to any processor at any time

– A kernel scales to any number of parallel processors
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Example: Executing Thread Blocks

– Threads are assigned to Streaming 
Multiprocessors (SM) in block granularity
– Up to 8 blocks to each SM as resource allows
– Fermi SM can take up to 1536 threads

– Could be 256 (threads/block) * 6 blocks 
– Or 512 (threads/block) * 3 blocks, etc.

– SM maintains thread/block idx #s
– SM manages/schedules thread execution

t0 t1 t2 … tm

Blocks

SPShared
Memory

SM
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The Von-Neumann Model

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit



42 

The Von-Neumann Model with SIMD units

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

Single Instruction Multiple Data
(SIMD)
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Warps as Scheduling Units
 

• Each Block is executed as 32-thread Warps
– An implementation decision, not part of the 

CUDA programming model
– Warps are scheduling units in SM
– Threads in a warp execute in SIMD 
– Future GPUs may have different number of 

threads in each warp
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Warp Example
• If 3 blocks are assigned to an SM and each block has 256 threads, 

how many Warps are there in an SM?
– Each Block is divided into 256/32 = 8 Warps
– There are 8 * 3 = 24 Warps 

…t0 t1 t2 … t31
…

…t0 t1 t2 … t31
…Block 0 Warps Block 1 Warps

…t0 t1 t2 … t31
…Block 2 Warps

Register File

L1 Shared Memory
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Example: Thread Scheduling (Cont.)
– SM implements zero-overhead warp scheduling

– Warps whose next instruction has its operands ready for consumption are eligible 
for execution

– Eligible Warps are selected for execution based on a prioritized scheduling policy
– All threads in a warp execute the same instruction when selected
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Block Granularity Considerations
– For Matrix Multiplication using multiple blocks, 

should I use 8X8, 16X16 or 32X32 blocks for 
Fermi?

– For 8X8, we have 64 threads per Block. Since each SM 
can take up to 1536 threads, which translates to 24 
Blocks. However, each SM can only take up to 8 Blocks, 
only 512 threads will go into each SM!

– For 16X16, we have 256 threads per Block. Since each 
SM can take up to 1536 threads, it can take up to 6 
Blocks and achieve full capacity unless other resource 
considerations overrule.

– For 32X32, we would have 1024 threads per Block. Only 
one block can fit into an SM for Fermi. Using only 2/3 of 
the thread capacity of an SM. 
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deviceQuery
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deviceQuery
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