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Objective
– To learn that memory bandwidth is a first-order performance factor in 

a massively parallel processor
– DRAM bursts, banks, and channels
– All concepts are also applicable to modern multicore processors
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Global Memory (DRAM) Bandwidth

– Ideal

– Reality
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DRAM Core Array Organization
– Each DRAM core array has about 16M bits

– Each bit is stored in a tiny capacitor made of one transistor
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A very small (8x2-bit) DRAM Core Array
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DRAM Core Arrays are Slow
– Reading from a cell in the core array is a very slow process

– DDR: Core speed = ½ interface speed
– DDR2/GDDR3: Core speed = ¼ interface speed
– DDR3/GDDR4: Core speed = ⅛ interface speed
– … likely to be worse in the future
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DRAM Bursting
– For DDR{2,3} SDRAM cores clocked at 1/N speed of the interface:

– Load (N × interface width) of DRAM bits from the same row at once to an internal 
buffer, then transfer in N steps at interface speed

– DDR3/GDDR4: buffer width = 8X interface width
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DRAM Bursting Timing Example
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Modern DRAM systems are designed to always be accessed 
in burst mode. Burst bytes are transferred to the processor but 
discarded when accesses are not to sequential locations.
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Multiple DRAM Banks
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DRAM Bursting with Banking

Single-Bank burst timing, dead time on interface

Multi-Bank burst timing, reduced dead time 
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GPU off-chip memory subsystem
– NVIDIA GTX280 GPU: 

– Peak global memory bandwidth = 141.7GB/s

– Global memory (GDDR3) interface @ 1.1GHz
– (Core speed @ 276Mhz)
– For a typical 64-bit interface, we can sustain only about 17.6 GB/s (Recall DDR - 2 transfers 

per clock)
– We need a lot more bandwidth (141.7 GB/s) – thus 8 memory channels
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Objective
– To learn that memory coalescing is important for effectively utilizing 

memory bandwidth in CUDA
– Its origin in DRAM burst
– Checking if a CUDA memory access is coalesced
– Techniques for improving memory coalescing in CUDA code
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DRAM Burst – A System View

– Each address space is partitioned into burst sections 
– Whenever a location is accessed, all other locations in the same 

section are also delivered to the processor 
– Basic example: a 16-byte address space, 4-byte burst sections

– In practice, we have at least 4GB address space,  burst section 
sizes of 128-bytes or more
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 Memory Coalescing

– When all threads of a warp execute a load instruction, if all accessed 
locations fall into the same burst section, only one DRAM request 
will be made and the access is fully coalesced.
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 Un-coalesced Accesses

– When the accessed locations spread across burst section 
boundaries:
– Coalescing fails
– Multiple DRAM requests are made
– The access is not fully coalesced.

– Some of the bytes accessed and transferred are not used by the 
threads
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How to judge if an access is coalesced?

– Accesses in a warp are to consecutive locations if the index in an 
array access is in the form of
– A[(expression with terms independent of threadIdx.x) + threadIdx.x];
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Two Access Patterns of Basic Matrix Multiplication 
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B accesses are coalesced
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A Accesses are Not Coalesced
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Loading an Input Tile
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int tx = threadIdx.x
int ty = threadIdx.y
Accessing tile 0 2D indexing:

A[Row][tx]
B[ty][Col]

Have each thread load an A element 
and a B element at the same relative 
position as its C element.
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Corner Turning

d_M d_N

W
ID
TH

WIDTH

d_M d_N

Original 
Access
Pattern

Tiled 
Access
Pattern

Copy into 
shared
memory

Perform 
multiplication 

with shared memory 
values



GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under 
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

