
CSE 599 I
Accelerated Computing -

Programming GPUS
Memory performance

DRAM Bandwidth
Module 6.1 – Memory Access Performance

Accelerated Computing

GPU Teaching Kit

3

Objective
– To learn that memory bandwidth is a first-order performance factor in

a massively parallel processor
– DRAM bursts, banks, and channels
– All concepts are also applicable to modern multicore processors

4

Global Memory (DRAM) Bandwidth

– Ideal

– Reality

5

DRAM Core Array Organization
– Each DRAM core array has about 16M bits

– Each bit is stored in a tiny capacitor made of one transistor

Memory Cell
Core Array

Row
Decode

r

Sense Amps

Column Latches

Mux

Row
Addr

Column
Addr

Off-chip
Data

Wide

Narrow Pin Interface

6

A very small (8x2-bit) DRAM Core Array

de
co

de

0 1 1

Sense amps

Mux

7

DRAM Core Arrays are Slow
– Reading from a cell in the core array is a very slow process

– DDR: Core speed = ½ interface speed
– DDR2/GDDR3: Core speed = ¼ interface speed
– DDR3/GDDR4: Core speed = ⅛ interface speed
– … likely to be worse in the future

de
co

de

To sense amps

A very small capacitance that
stores a data bit

About 1000 cells connected to each vertical line

8

DRAM Bursting
– For DDR{2,3} SDRAM cores clocked at 1/N speed of the interface:

– Load (N × interface width) of DRAM bits from the same row at once to an internal
buffer, then transfer in N steps at interface speed

– DDR3/GDDR4: buffer width = 8X interface width

9

DRAM Bursting Timing Example

time

Address bits to
decoder

Core Array access delay
bits

on interface

Non-burst timing

Burst timing

Modern DRAM systems are designed to always be accessed
in burst mode. Burst bytes are transferred to the processor but
discarded when accesses are not to sequential locations.

10

Multiple DRAM Banks

de
co

de

Sense amps

Mux

de
co

de

Sense amps

Mux
Bank 0 Bank 1

11

DRAM Bursting with Banking

Single-Bank burst timing, dead time on interface

Multi-Bank burst timing, reduced dead time

12

GPU off-chip memory subsystem
– NVIDIA GTX280 GPU:

– Peak global memory bandwidth = 141.7GB/s

– Global memory (GDDR3) interface @ 1.1GHz
– (Core speed @ 276Mhz)
– For a typical 64-bit interface, we can sustain only about 17.6 GB/s (Recall DDR - 2 transfers

per clock)
– We need a lot more bandwidth (141.7 GB/s) – thus 8 memory channels

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

Memory Coalescing in CUDA
Lecture 6.2 – Performance Considerations

GPU Teaching Kit
Accelerated Computing

15

Objective
– To learn that memory coalescing is important for effectively utilizing

memory bandwidth in CUDA
– Its origin in DRAM burst
– Checking if a CUDA memory access is coalesced
– Techniques for improving memory coalescing in CUDA code

16

DRAM Burst – A System View

– Each address space is partitioned into burst sections
– Whenever a location is accessed, all other locations in the same

section are also delivered to the processor
– Basic example: a 16-byte address space, 4-byte burst sections

– In practice, we have at least 4GB address space, burst section
sizes of 128-bytes or more

16

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section

17

 Memory Coalescing

– When all threads of a warp execute a load instruction, if all accessed
locations fall into the same burst section, only one DRAM request
will be made and the access is fully coalesced.

17

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section

T0 T1 T2 T3

Coalesced Loads
T0 T1 T2 T3

Coalesced Loads

18

 Un-coalesced Accesses

– When the accessed locations spread across burst section
boundaries:
– Coalescing fails
– Multiple DRAM requests are made
– The access is not fully coalesced.

– Some of the bytes accessed and transferred are not used by the
threads

18

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section

T0 T1 T2 T3

Un-coalesced
LoadsT0 T1 T2 T3

Un-coalesced Loads

19

How to judge if an access is coalesced?

– Accesses in a warp are to consecutive locations if the index in an
array access is in the form of
– A[(expression with terms independent of threadIdx.x) + threadIdx.x];

19

20

M0

,2M1

,1

M0

,1

M0

,0M1

,0

M0

,3M1

,2

M1

,3

M0

,2

M0

,1

M0

,0

M0

,3

M1

,1

M1

,0

M1

,2

M1

,3

M2

,1

M2

,0

M2

,2

M2

,3

M2

,1

M2

,0

M2

,2

M2

,3M3

,1

M3

,0

M3

,2

M3

,3

M3

,1

M3

,0

M3

,2

M3

,3

M

linearized order in increasing address

A 2D C Array in Linear Memory Space
20

21

Two Access Patterns of Basic Matrix Multiplication

A B

WIDTH

Thread
1Thread
2

A[Row*n+i] B[i*k+Col]

H
E
IG

H
T

22

B accesses are coalesced

N
T0 T1 T2 T3

Load iteration 0
T0 T1 T2 T3

Load iteration 1

Access
direction in
kernel code

B0

,2B1

,1

B0

,1

B0

,0B1

,0

B0

,3B1

,2

B1

,3B2

,1

B2

,0

B2

,2

B2

,3B3

,1

B3

,0

B3

,2

B3

,3

B0

,2

B0

,1

B0

,0

B0

,3

B1

,1

B1

,0

B1

,2

B1

,3

B2

,1

B2

,0

B2

,2

B2

,3

B3

,1

B3

,0

B3

,2

B3

,3

23

A Accesses are Not Coalesced

T0 T1 T2 T3

Load iteration 0

T0 T1 T2 T3

Load iteration 1

Access
direction in
kernel code

…

A0

,2A1

,1

A0

,1

A0

,0A1

,0

A0

,3A1

,2

A1

,3A2

,1

A2

,0

A2

,2

A2

,3A3

,1

A3

,0

A3

,2

A3

,3

A0

,2

A0

,1

A0

,0

A0

,3

A1

,1

A1

,0

A1

,2

A1

,3

A2

,1

A2

,0

A2

,2

A2

,3

A3

,1

A3

,0

A3

,2

A3

,3

24

Loading an Input Tile

A

B

C

W
ID

T
H

Ro
w

Co
l

n

m

n

k

k

m

int tx = threadIdx.x
int ty = threadIdx.y
Accessing tile 0 2D indexing:

A[Row][tx]
B[ty][Col]

Have each thread load an A element
and a B element at the same relative
position as its C element.

25

Corner Turning

d_M d_N

W
ID
TH

WIDTH

d_M d_N

Original
Access
Pattern

Tiled
Access
Pattern

Copy into
shared
memory

Perform
multiplication

with shared memory
values

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

