
CSE 599 I
Accelerated Computing -

Programming GPUS
Parallel Patterns: Prefix Sum (Scan)

Accelerated Computing

GPU Teaching Kit

Parallel Reduction
Module 9.1 – Parallel Computation Patterns (Reduction)

3

Objective
– To learn the parallel reduction pattern

– An important class of parallel computation
– Work efficiency analysis
– Resource efficiency analysis

3

4

Partition and Summarize
– A commonly used strategy for processing large input

data sets
– There is no required order of processing elements in a data set (associative and

commutative)
– Partition the data set into smaller chunks
– Have each thread to process a chunk
– Use a reduction tree to summarize the results from each chunk into the final

answer

– Google and Hadoop MapReduce frameworks support
this strategy

– We will focus on the reduction tree step for now

4

5

Reduction enables other techniques
– Reduction is also needed to clean up after some

commonly used parallelizing transformations
– Privatization

– Multiple threads write into an output location
– Replicate the output location so that each thread has a private output

location
– Use a reduction tree to combine the values of private locations into

the original output location

5

6

What is a reduction computation?
– Summarize a set of input values into one value using a

“reduction operation”
– Max
– Min
– Sum
– Product

– Often used with a user defined reduction operation
function as long as the operation
– Is associative and commutative
– Has a well-defined identity value (e.g., 0 for sum)
– For example, the user may supply a custom “max” function for 3D

coordinate data sets where the magnitude for the each coordinate
data tuple is the distance from the origin.

An example of “collective operation”

7

An Efficient Sequential Reduction O(N)
– Initialize the result as an identity value for the reduction operation

– Smallest possible value for max reduction
– Largest possible value for min reduction
– 0 for sum reduction
– 1 for product reduction

– Iterate through the input and perform the reduction operation
between the result value and the current input value

– N reduction operations performed for N input values
– Each input value is only visited once – an O(N) algorithm
– This is a computationally efficient algorithm.

7

8

A parallel reduction tree algorithm performs
N-1 operations in log(N) steps

13

9

A tournament is a reduction tree with “max” operation

10

A Quick Analysis
– For N input values, the reduction tree performs

– (1/2)N + (1/4)N + (1/8)N + … (1)N = (1- (1/N))N = N-1 operations
– In Log (N) steps – 1,000,000 input values take 20 steps

– Assuming that we have enough execution resources
– Average Parallelism (N-1)/Log(N))

– For N = 1,000,000, average parallelism is 50,000
– However, peak resource requirement is 500,000
– This is not resource efficient

– This is a work-efficient parallel algorithm
– The amount of work done is comparable to an efficient sequential algorithm
– Many parallel algorithms are not work efficient

10

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

Accelerated Computing

GPU Teaching Kit

A Basic Reduction Kernel
Module 9.2 – Parallel Computation Patterns (Reduction)

13

Objective
– To learn to write a basic reduction kernel

– Thread to data mapping
– Turning off threads
– Control divergence

14

Parallel Sum Reduction
– Parallel implementation

– Recursively halve # of threads, add two values per thread in each step
– Takes log(n) steps for n elements, requires n/2 threads

– Assume an in-place reduction using shared memory
– The original vector is in device global memory
– The shared memory is used to hold a partial sum vector
– Each step brings the partial sum vector closer to the sum
– The final sum will be in element 0 of the partial sum vector
– Reduces global memory traffic due to partial sum values
– Thread block size limits n to be less than or equal to 2,048

14

15

A Parallel Sum Reduction Example

16

A Naive Thread to Data Mapping

– Each thread is responsible for an even-index location of the partial sum
vector (location of responsibility)

– After each step, half of the threads are no longer needed
– One of the inputs is always from the location of responsibility
– In each step, one of the inputs comes from an increasing distance away

16

17

A Simple Thread Block Design
– Each thread block takes 2*BlockDim.x input elements
– Each thread loads 2 elements into shared memory

__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;
partialSum[2*t] = input[2*t];
partialSum[2*t + 1] = input[2*t + 1];

17

18

A Simple Thread Block Design
– Each thread block takes 2*BlockDim.x input elements
– Each thread loads 2 elements into shared memory

__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;
partialSum[t] = input[t];
partialSum[BLOCK_SIZE+t] = input[BLOCK_SIZE+t];

18

19

The Reduction Steps
for (unsigned int stride = 1;

 stride <= blockDim.x; stride *= 2)
{
 __syncthreads();
 if (t % stride == 0)
 partialSum[2*t]+= partialSum[2*t+stride];
}

19

Why do we need
__syncthreads()?

20

Barrier Synchronization
– __syncthreads() is needed to ensure that all elements of each

version of partial sums have been generated before we proceed
to the next step

20

21

Back to the Global Picture
– At the end of the kernel, Thread 0 in each thread block

writes the sum of the thread block in partialSum[0] into a
vector indexed by the blockIdx.x

– There can be a large number of such sums if the original
vector is very large
– The host code may iterate and launch another kernel

– If there are only a small number of sums, the host can
simply transfer the data back and add them together

21

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

Accelerated Computing

GPU Teaching Kit

A Better Reduction Kernel
Module 9.3 – Parallel Computation Patterns (Reduction)

24

Objective
– To learn to write a better reduction kernel

– Resource efficiency analysis
– Improved thread to data mapping
– Reduced control divergence

25

Some Observations on the naïve reduction kernel

– In each iteration, two control flow paths will be sequentially
traversed for each warp

– Threads that perform addition and threads that do not
– Threads that do not perform addition still consume execution resources

– Half or fewer of threads will be executing after the first step
– All odd-index threads are disabled after first step
– After the 5th step, entire warps in each block will fail the if test, poor resource

utilization but no divergence
– This can go on for a while, up to 6 more steps (stride = 32, 64, 128, 256, 512, 1024),

where each active warp only has one productive thread until all warps in a block
retire

25

26

Thread Index Usage Matters
– In some algorithms, one can shift the index usage to improve the

divergence behavior
– Commutative and associative operators

– Always compact the partial sums into the front locations in the
partialSum[] array

– Keep the active threads consecutive

26

27

An Example of 4 threads
Thread 0

3 1 7 0 614 3

7 2 13 3

20 5

 25

Thread 1 Thread 2 Thread 3

28

A Better Reduction Kernel

for (unsigned int stride = blockDim.x;
 stride > 0; stride /= 2)

{
 __syncthreads();
 if (t < stride)

 partialSum[t] += partialSum[t+stride];
}

28

29

A Quick Analysis
– For a 1024 thread block

– No divergence in the first 5 steps
– 1024, 512, 256, 128, 64, 32 consecutive threads are active in each

step
– All threads in each warp either all active or all inactive

– The final 5 steps will still have divergence

29

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

Prefix Sum
Module 10.1 – Parallel Computation Patterns (scan)

GPU Teaching Kit
Accelerated Computing

32

Objective
– To master parallel scan (prefix sum) algorithms

– Frequently used for parallel work assignment and resource allocation
– A key primitive in many parallel algorithms to convert serial computation into

parallel computation
– A foundational parallel computation pattern
– Work efficiency in parallel code/algorithms

– Reading –Mark Harris, Parallel Prefix Sum with CUDA
– http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html

32

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html

33

Inclusive Scan (Prefix-Sum) Definition

Definition: The scan operation takes a binary associative operator ⊕
(pronounced as circle plus), and an array of n elements

 [x0, x1, …, xn-1],

and returns the array

[x0, (x0 ⊕ x1), …, (x0 ⊕ x1 ⊕ … ⊕ xn-1)].

Example: If ⊕ is addition, then scan operation on the array would
return

[3 1 7 0 4 1 6 3], [3 4 11 11 15 16 22 25].

34

An Inclusive Scan Application Example
– Assume that we have a 100-inch sandwich to feed 10 people
– We know how much each person wants in inches

– [3 5 2 7 28 4 3 0 8 1]
– How do we cut the sandwich quickly?
– How much will be left?

– Method 1: cut the sections sequentially: 3 inches first, 5 inches second, 2 inches third, etc.

– Method 2: calculate prefix sum:
– [3, 8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)

34

35

Typical Applications of Scan
– Scan is a simple and useful parallel building block

– Convert recurrences from sequential:
 for(j=1;j<n;j++)
 out[j] = out[j-1] + f(j);

– Into parallel:
 forall(j) { temp[j] = f(j) };
 scan(out, temp);

– Useful for many parallel algorithms:

• Radix sort
• Quicksort
• String comparison
• Lexical analysis
• Stream compaction

• Polynomial
evaluation

• Solving recurrences
• Tree operations
• Histograms, ….

36

Other Applications
– Assigning camping spots
– Assigning Farmer’s Market spaces
– Allocating memory to parallel threads
– Allocating memory buffer space for communication channels
– …

36

37

An Inclusive Sequential Addition Scan
Given a sequence [x0, x1, x2, ...]
Calculate output [y0, y1, y2, ...]

Such that y0 = x0
y1 = x0 + x1
y2 = x0 + x1+ x2

…
Using a recursive definition

yi = yi − 1 + xi

37

38

A Work Efficient C Implementation

 y[0] = x[0];
 for (i = 1; i < Max_i; i++) y[i] = y [i-1] + x[i];

Computationally efficient:

N additions needed for N elements - O(N)!
Only slightly more expensive than sequential reduction.

38

39

A Naïve Inclusive Parallel Scan
– Assign one thread to calculate each y element
– Have every thread to add up all x elements needed for the y element

y0 = x0
y1 = x0 + x1
y2 = x0 + x1+ x2

“Parallel programming is easy as long as you do not care about
performance.”

39

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

A Work-inefficient Scan Kernel
Module 10.2 – Parallel Computation Patterns (scan)

GPU Teaching Kit
Accelerated Computing

42

Objective
– To learn to write and analyze a high-performance scan kernel

– Interleaved reduction trees
– Thread index to data mapping
– Barrier Synchronization
– Work efficiency analysis

43

A Better Parallel Scan Algorithm
1. Read input from device global memory to shared memory
2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration

• Active threads stride to n-1 (n-stride threads)
• Thread j adds elements j and j-stride from shared memory and writes

result into element j in shared memory
• Requires barrier synchronization, once before read and once before

write

XY 3 4 8 7 4 5 7 9

XY 3 1 7 0 4 1 6 3

ITERATION = 1
STRIDE = 1

STRIDE 1

44

A Better Parallel Scan Algorithm
1. Read input from device to shared memory
2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration.

XY 3 4 8 7 4 5 7 9

XY 3 1 7 0 4 1 6 3

ITERATION = 2
STRIDE = 2

STRIDE 1

XY 3 4 11 11 12 12 11 14

STRIDE 2

45

A Better Parallel Scan Algorithm
1. Read input from device to shared memory
2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration
3. Write output from shared memory to device memory

XY 3 4 8 7 4 5 7 9

XY 3 1 7 0 4 1 6 3

ITERATION = 3
STRIDE = 4

STRIDE 1

XY 3 4 11 11 12 12 11 14

STRIDE 2

XY 3 4 11 11 15 16 22 25

STRIDE 4

46

1. Read input from device to shared memory
2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration
3. Write output from shared memory to device memory

A Better Parallel Scan Algorithm

XY 3 4 8 7 4 5 7 9

XY 3 1 7 0 4 1 6 3

ITERATION = 3
STRIDE = 4

STRIDE 1

XY 3 4 11 11 12 12 11 14

STRIDE 2

XY 3 4 11 11 15 16 22 25

STRIDE 4

47

1. Read input from device to shared memory
2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration
3. Write output from shared memory to device memory

A Better Parallel Scan Algorithm

XY 3 4 8 7 4 5 7 9

XY 3 1 7 0 4 1 6 3

ITERATION = 3
STRIDE = 4

STRIDE 1

XY 3 4 11 11 12 12 11 14

STRIDE 2

XY 3 4 11 11 15 16 22 25

STRIDE 4

48

Handling Dependencies
– During every iteration, each thread can overwrite the input of another

thread
– Barrier synchronization to ensure all inputs have been properly generated
– All threads secure input operand that can be overwritten by another thread
– Barrier synchronization is required to ensure that all threads have secured their

inputs
– All threads perform addition and write output

XY 3 4 8 7 4 5 7 9

XY 3 1 7 0 4 1 6 3

ITERATION = 1
STRIDE = 1

STRIDE 1

49

 A Work-Inefficient Scan Kernel
__global__ void work_inefficient_scan_kernel(float *X, float *Y, int InputSize) {
 __shared__ float XY[SECTION_SIZE];
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < InputSize) {XY[threadIdx.x] = X[i];}
 // the code below performs iterative scan on XY
 for (unsigned int stride = 1; stride <= threadIdx.x; stride *= 2) {
 __syncthreads();
 float in1 = XY[threadIdx.x - stride];
 __syncthreads();
 XY[threadIdx.x] += in1;
 }
 __ syncthreads();
 If (i < InputSize) {Y[i] = XY[threadIdx.x];}
}

50

Work Efficiency Considerations
– This Scan executes log(n) parallel iterations

– The iterations do (n-1), (n-2), (n-4),..(n- n/2) adds each
– Total adds: n * log(n) - (n-1) → O(n*log(n)) work

– This scan algorithm is not work efficient
– Sequential scan algorithm does n adds
– A factor of log(n) can hurt: 10x for 1024 elements!

– A parallel algorithm can be slower than a sequential one
when execution resources are saturated from low work
efficiency

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

A Work-Efficient Parallel Scan Kernel
Lecture 10.3 – Parallel Computation Patterns (scan)

GPU Teaching Kit
Accelerated Computing

53

Objective
– To learn to write a work-efficient scan kernel

– Two-phased balanced tree traversal
– Aggressive re-use of intermediate results
– Reducing control divergence with more complex thread index to data index

mapping

54

Improving Efficiency
– Balanced Trees

– Form a balanced binary tree on the input data and sweep it to
and from the root

– Tree is not an actual data structure, but a concept to determine
what each thread does at each step

– For scan:
– Traverse down from leaves to the root building partial sums at

internal nodes in the tree
– The root holds the sum of all leaves

– Traverse back up the tree building the output from the partial
sums

54

55

Parallel Scan - Reduction Phase

+

+

+ + +

+

+

x0 x3 x4 x5 x6 x7x1 x2

∑x0..x1 ∑x2..x3 ∑x4..x5 ∑x6..x7

∑x0..x3
∑x4..x7

∑x0..x7

Time

In-place calculation

Value after reduce

56

Reduction Phase Kernel Code

56

// XY[2*BLOCK_SIZE] is in shared memory

for (unsigned int stride = 1;stride <= BLOCK_SIZE; stride *= 2)
{
 int index = (threadIdx.x+1)*stride*2 - 1;
 if(index < 2*BLOCK_SIZE)
 XY[index] += XY[index-stride];
 __syncthreads();
}

threadIdx.x+1 = 1, 2, 3, 4….
stride = 1,

 index = 1, 3, 5, 7, …

57

Parallel Scan - Post Reduction Reverse Phase

+

x0 x4 x6x2
∑x0..x1 ∑x4..x5

∑x0..x3 ∑x0..x7

∑x0..x5

Move (add) a critical value to a central
location where it is needed

58

Parallel Scan - Post Reduction Reverse Phase

+

x0 x4 x6x2
∑x0..x1 ∑x4..x5∑x0..x3 ∑x0..x7

∑x0..x5

+ +

∑x0..x2 ∑x0..x4

+

∑x0..x6

59

Putting it Together

http://upload.wikimedia.org/wikipedia/commons/8/81/Prefix_sum_16.svg

60

Post Reduction Reverse Phase Kernel Code

 for (unsigned int stride = BLOCK_SIZE/2; stride > 0; stride /= 2) {
 __syncthreads();
 int index = (threadIdx.x+1)*stride*2 - 1;
 if(index+stride < 2*BLOCK_SIZE) {
 XY[index + stride] += XY[index];
 }
 }
 __syncthreads();
 if (i < InputSize) Y[i] = XY[threadIdx.x];

First iteration for 16-element section
threadIdx.x = 0
stride = BLOCK_SIZE/2 = 8/2 = 4
index = 8-1 = 7

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

More on Parallel Scan
Module 10.4 – Parallel Computation Patterns (scan)

GPU Teaching Kit
Accelerated Computing

63

Objective
– To learn more about parallel scan

– Analysis of the work efficient kernel
– Exclusive scan
– Handling very large input vectors

64

Work Analysis of the Work Efficient Kernel
– The work efficient kernel executes log(n) parallel iterations in the reduction step

– The iterations do n/2, n/4,..1 adds

– Total adds: (n-1) → O(n) work

– It executes log(n)-1 parallel iterations in the post-reduction reverse step
– The iterations do 2-1, 4-1, …. n/2-1 adds

– Total adds: (n-2) – (log(n)-1) → O(n) work

– Both phases perform up to no more than 2x(n-1) adds

– The total number of adds is no more than twice of that done in the efficient sequential
algorithm
– The benefit of parallelism can easily overcome the 2X work when there is sufficient

hardware

64

65

Some Tradeoffs
– The work efficient scan kernel is normally more desirable

– Better Energy efficiency

– Less execution resource requirement

– However, the work inefficient kernel could be better for absolute
performance due to its single-phase nature (forward phase only)

– There is sufficient execution resource

65

66

Can We do Even Better?
– There are still many inactive threads in many iterations of the

work-efficient scan
– Inactive threads still require resources (registers, PC, etc.) to remain

resident in a SM
– For large inputs, the performance of the work-efficient kernel may

start to resemble O(nlog(n)) rather than O(n)

66

67

Thread Granularity Adjustment
– A thread granularity adjustment will make better use of computational

resources
– Each thread is assigned a contiguous section of the input
– The scan proceeds in three steps:

1. Each thread performs a sequential scan of its assigned section
2. Threads collaborate to perform a parallel scan of the partial sums
3. Each thread adds the previous thread’s prefix sum to all scan

values in its assigned section

67

68

Thread Granularity Adjustment

68

2 1 3 1 0 4 1 2 0 3 1 2 5 3 1 2

2 3 6 7 0 4 5 7 0 3 4 6 5 8 9 11

t0 t1 t2 t3Sequential Scan:

2 3 6 7 0 4 5 14 0 3 4 20 5 8 9 31

Parallel Scan:

2 3 6 7 7 11 12 14 14 17 18 20 25 28 29 31

Distribute:

69

Handling Large Input Vectors
– Build on the work efficient scan kernel
– Have each section of 2*blockDim.x elements assigned to a block

– Perform parallel scan on each section
– Have each block write the sum of its section into a Sum[] array indexed

by blockIdx.x
– Run the scan kernel on the Sum[] array
– Add the scanned Sum[] array values to all the elements of

corresponding sections
– Adaptation of work inefficient kernel is similar.

69

70

Overall Flow of Complete Scan

71

Multi-block Scan (Part 1)

__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;
unsigned int start = 2*blockIdx.x*blockDim.x;
partialSum[t] = input[start + t];
partialSum[blockDim+t] = input[start + blockDim.x+t];

…

if (t == 0)
 aux[blockIdx.x] = partialSum[2*BLOCK_SIZE-1];

71

72

Multi-block Scan (Part 1)

__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;
unsigned int start = 2*blockIdx.x*blockDim.x;
partialSum[t] = input[start + t];
partialSum[blockDim+t] = input[start + blockDim.x+t];

…

if (t == 0)
 aux[blockIdx.x] = partialSum[2*BLOCK_SIZE-1];

72

73

Multi-block Inefficiencies
– Intermediate results are computed in shared memory, then saved in global memory

– Phase 2 reads a subset of the intermediate results from global memory, performs a
scan in shared memory, and saves the result back to the global memory

– Phase 3 reads the Phase 2 results from global memory and updates (almost) all
global memory values

73

74

“Streaming” Scan
– These inefficiencies can be overcome with message passing.

– After computing the local sum, one thread from the block waits for a message
from the previous block containing the prefix sum up to that point

– This thread then adds the local sum and passes the result to the next block

– Finally, the prefix sum from the previous block is added to all local results

– This multi-block scan can be done with one kernel launch, reducing the need for
round trips to global memory

74

75

“Streaming” Scan
__shared__ float previous_sum;

// perform local scan (Phase 1)

...

if (threadIdx.x == 0) {

 // Wait for the previous flag

 while (atomicAdd(&flags[bid], 0) == 0) {;}

 // Read previous partial sum

 previous_sum = scan_value[bid];

 // Propagate partial sum

 scan_value[bid+1] = previous_sum + local_sum;

 // Memory fence

 __threadfence();

 // Set flag

 atomicAdd(&flags[bid + 1], 1);

}

__syncthreads();

// perform local distribution (Phase 3)

...

75

76

“Streaming” Scan
const int bid = blockIdx.x;

__shared__ float previous_sum;

// perform local scan (Phase 1)

...

if (threadIdx.x == 0) {

 // Wait for the previous flag

 while (atomicAdd(&flags[bid], 0) == 0) {;}

 // Read previous partial sum

 previous_sum = scan_value[bid];

 // Propagate partial sum

 scan_value[bid+1] = previous_sum + local_sum;

 // Memory fence

 __threadfence();

 // Set flag

 atomicAdd(&flags[bid + 1], 1);

}

__syncthreads();

// perform local distribution (Phase 3)

...

76

This code is susceptible to deadlock!

77

Dynamic Block ID Assignment
__shared__ int bid;

if (threadIdx.x == 0) {

 bid = atomicAdd(DCounter, 1);

}

__syncthreads();

77

__shared__ float previous_sum;

// perform local scan (Phase 1)

...

if (threadIdx.x == 0) {

 // Wait for the previous flag

 while (atomicAdd(&flags[bid], 0) == 0) {;}

 // Read previous partial sum

 previous_sum = scan_value[bid];

 // Propagate partial sum

 scan_value[bid+1] = previous_sum + local_sum;

 // Memory fence

 __threadfence();

 // Set flag

 atomicAdd(&flags[bid + 1], 1);

}

__syncthreads();

// perform local distribution (Phase 3)

...

78

Exclusive Scan Definition
Definition: The exclusive scan operation takes a binary associative operator ⊕, and an array of
n elements

[x0, x1, …, xn-1]

and returns the array

[0, x0, (x0 ⊕ x1), …, (x0 ⊕ x1 ⊕ … ⊕ xn-2)].

Example: If ⊕ is addition, then the exclusive scan operation
on the array [3 1 7 0 4 1 6 3],
would return [0 3 4 11 11 15 16 22].

78

79

Why Use Exclusive Scan?
– To find the beginning address of allocated buffers

– Inclusive and exclusive scans can be easily derived from each other;
it is a matter of convenience

[3 1 7 0 4 1 6 3]

Exclusive [0 3 4 11 11 15 16
22]

Inclusive[3 4 11 11 15 16 22 25]

80

A Simple Exclusive Scan Kernel
– Adapt an inclusive, work inefficient scan kernel

– Block 0:
– Thread 0 loads 0 into XY[0]

– Other threads load X[threadIdx.x-1] into XY[threadIdx.x]

– All other blocks:
– All thread load X[blockIdx.x*blockDim.x+threadIdx.x-1] into XY[threadIdex.x]

– Similar adaption for work efficient scan kernel but ensure that each
thread loads two elements

– Only one zero should be loaded

– All elements should be shifted to the right by only one position

80

Read the Harris article (Parallel Prefix Sum with
CUDA) for a more intellectually interesting
approach to exclusive scan kernel
implementation.

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

82 82

Stream Compaction
– A common use case for parallel scans

– Stream compaction is the removal of unwanted or irrelevant
elements from an input stream based on some predicate

– The elements which pass the predicate test are placed in
contiguous memory

83 83

Stream Compaction

0 7 0 0 4 0 1 0 0 0 8 4 0 0 6 0

84 84

Stream Compaction

0 7 0 0 4 0 1 0 0 0 8 4 0 0 6 0

Predicate: x > 0

85 85

Stream Compaction

0 7 0 0 4 0 1 0 0 0 8 4 0 0 6 0

Predicate: x > 0

0 1 0 0 1 0 1 0 0 0 1 1 0 0 1 0

86 86

Stream Compaction

0 7 0 0 4 0 1 0 0 0 8 4 0 0 6 0

Predicate: x > 0

0 1 0 0 1 0 1 0 0 0 1 1 0 0 1 0

0 0 1 1 1 2 2 3 3 3 3 4 5 5 5 6

Exclusive scan

87 87

Stream Compaction

0 7 0 0 4 0 1 0 0 0 8 4 0 0 6 0

Predicate: x > 0

0 1 0 0 1 0 1 0 0 0 1 1 0 0 1 0

0 0 1 1 1 2 2 3 3 3 3 4 5 5 5 6

Exclusive scan

if (predicate(input[x])) {
 output[scan[x]] = input[x];
}

7 4 1 8 4 6

